Vasou P, Krokos G, Langodan S, Sofianos S, Hoteit I.
Contribution of surface and lateral forcing to the Arabian Gulf warming trend. Frontiers in Marine Science [Internet]. 2024;Volume 10 - 2023.
WebsiteAbstractThe contribution of surface and lateral forcing to the observed Arabian Gulf warming trends is studied based on the results of a high-resolution (1/100°, 60 vertical layers) MIT general circulation model (MITgcm) covering the period 1993-2021. The model validation against available observations reveals that the simulation satisfactorily reproduces the main features of the Arabian Gulf's dynamics and their variability. We show that the heat content of the Arabian Gulf generally follows the reported variability of sea surface temperature, with significant increasing trends of 0.1 × 10 7 J m −3 and 0.2°C per decade. The interannual variability of the heat content is dominated by the surface heat fluxes, while the long-term warming of the basin is primarily driven by lateral fluxes. The analyses of the heat exchanges through the Strait of Hormuz indicate a pronounced upward trend in the transported heat toward the Arabian Gulf, which is associated with an increase in both the volume and temperature of the exchanged waters. Considering the inflow and outflow in the Strait separately, the temperature increase is more prominent in the inflowing waters; however, the dominant factor driving the rising trend in heat content exchanges is the increase in the volume of waters being exchanged. This implies that the observed warming of the Arabian Gulf during the investigated period is directly related to the acceleration of its overturning circulation.
Karagiorgos J, Vervatis V, Samos I, Flocas H, Sofianos S.
Ocean-wave-atmosphere coupling effect in Medicane forecasting. Atmospheric Research [Internet]. 2024;304:107418.
WebsiteAbstractAccurate modelling of air-sea processes is essential for reliable forecasts of Mediterranean tropical-like cyclones (also known as “Medicanes”). Medicanes occasionally develop in the Mediterranean causing extreme weather conditions with catastrophic potential due to excessive precipitation, windstorms, and coastal flooding. In this work, we investigate how the complexity of ocean-wave-atmosphere coupling and model initialization affect the simulated track and intensity of the Medicane Ianos (2020). Results indicate that the model's initial conditions and the cyclone's development stage are the main drivers of track position errors, while ocean and wave feedback have a significant impact on the intensity and evolution of the cyclone. Compared with an atmosphere-only simulation, an atmosphere-ocean coupled system reproduces the cyclone's SST cooling effect (up to 3.7 °C), in agreement also with the satellite observations thus, reducing the cyclone intensity, as estimated by the minimum MSLP, the 10-m wind speed and the surface enthalpy flux. Adding a wave model to the coupled system, further increases the magnitude of ocean cooling (by about 1.2 °C), due to increased sea surface roughness leading to increased wind stress and enhanced upper ocean mixing. Overall, surface waves are shown to have competing effects on cyclone intensity i.e., negative feedback via increasing the surface momentum flux and positive feedback via increasing the enthalpy flux, the latter being more sensitive to surface roughness rather than to SST modifications brought by the wave coupled system. The turbulent air-sea fluxes under high winds, appear to be very sensitive to sea-state patterns resolved by the coupled models, highlighting the need to improve forecasting systems for extreme weather events in the Mediterranean.
Kontoyiannis H, Pratt LJ, Zervakis V, Alford MH, Sofianos S, Theocharis A.
Current and density observations on a flow through a contraction and over a bottom elevation at the southern edge of the Cycladic Plateau in the Aegean Sea – East Mediterranean. Dynamics of Atmospheres and Oceans [Internet]. 2024;106:101460.
WebsiteAbstractA CTD/ADCP/surface-drifter survey in fall 2004 reveals the behaviour of a mesoscale unidirectional flow coming from the Cretan sea in the south with depths ∼1000 m and entering a channel-like area of the Cycladic shelf in the north, that forms a contraction which leads to a bottom elevation (sill depth ∼100 m), and finally returning into the Cretan Sea in the lee-side of the sill. The flow decelerates/accelerates upstream/downstream of the sill. The along-stream density contours near the sill bottom are raised prior to reaching the sill, while they deepen in the lee side of it indicating supercriticality. The long-wavelength internal wave speeds with realistic stratification and no-rotation are higher than the section averaged flow speeds and indicate subcriticality. A key element in this apparent paradox is the large height of the sill that potentially increases the body (drag) force exerted on the flow by the sill while flow blocking is also observed upstream of the sill.
Metheniti V, Vervatis V, Kampanis N, Sofianos S.
Turbidity effects on the Aegean sea surface properties using numerical simulations. [Internet]. 2024;75:4.
WebsiteAbstractThis study examines the impact of different turbidity products on the Aegean Sea surface physical characteristics, by performing twin-experiment simulations using a high-resolution regional ocean model. The turbidity products used include an in-situ based diffuse attenuation coefficient dataset at 490 nm (kd490, in m- 1) and a satellite derived kd490 product. Satellite turbidity products are broadly used in ocean simulations due to their spatiotemporal coverage and algorithm universality. Their validation and empirical components are trained mainly in phytoplankton driven regions and this may cause systematic differences in oligotrophic areas of variable optical properties’ composition. In the Aegean Sea, the in-situ based turbidity product accounts for the contribution of suspended particles in the solar heating profile, having further implications in the surface characteristics. The Aegean Sea upper-ocean thermohaline characteristics and general circulation patterns, reveal distinct differences between the twin-experiment simulations, showcasing mesoscale to locally induced impact of the turbidity variations. The turbidity impact on the air-sea interaction fluxes affects both thermodynamic processes i.e., solar radiation penetration and absorption in the water column, as well as dynamic processes i.e., momentum fluxes due to changes of the sea surface temperature and subsequently to the momentum drag coefficient. The Aegean Sea surface characteristics in the in-situ based turbidity product simulation, show a stronger decoupling between the North and the South Aegean Sea, when compared with the satellite derived turbidity product simulation. These results highlight the importance of incorporating more realistic turbidity products in ocean models, especially for optically complex regions such as the Aegean Sea.