Abstract:
The paper presents a semi-supervised weather classification method based on 850-hPa isobaric level maps. A preprocessing step is employed, where isolines of geopotential height are extracted from weather map images via an image processing procedure. Α feature extraction stage follows where two techniques are applied. The first technique implements phase space reconstruction, and yields multidimensional delay distributions. The second technique is based on chain code representation of signals, from which histogram features are derived. Similarity measures are used to compare multidimensional data and the k-means algorithm is applied in the final stage. The method is applied over the area of Greece, and the resulting catalogues are compared to a subjective classification for this area. Numerical experiments with datasets derived from the European Meteorological Bulletin archives exhibit an up to 91 % accurate agreement with the subjective weather patterns. © 2013 Springer-Verlag Wien.
Notes:
cited By (since 1996)0
Website