Publications by Year: 2020

2020
Mavridis, G. ; Arya, R. ; Domnick, A. ; Zoidakis, J. ; Makridakis, M. ; Vlahou, A. ; Mpakali, A. ; Lelis, A. ; Georgiadis, D. ; Tampé, R. ; et al. A Systematic Re-Examination Of Processing Of Mhci-Bound Antigenic Peptide Precursors By Endoplasmic Reticulum Aminopeptidase 1. Journal of Biological Chemistry 2020, 295, 7193-7210. Website
Seamon, K. ; Kurlak, L. O. ; Warthan, M. ; Stratikos, E. ; Strauss, J.F., I. I. I. ; Mistry, H. D. ; Lee, E. D. The Differential Expression Of Erap1/erap2 And Immune Cell Activation In Pre-Eclampsia. Frontiers in Immunology 2020, 11. Website
Maben, Z. ; Arya, R. ; Rane, D. ; An, W. F. ; Metkar, S. ; Hickey, M. ; Bender, S. ; Ali, A. ; Nguyen, T. T. ; Evnouchidou, I. ; et al. Discovery Of Selective Inhibitors Of Endoplasmic Reticulum Aminopeptidase 1. Journal of Medicinal Chemistry 2020, 63, 103-121. Website
Gkolfinopoulou, C. ; Soukou, F. ; Dafnis, I. ; Kellici, T. F. ; Sanoudou, D. ; Mavromoustakos, T. ; Stratikos, E. ; Chroni, A. Structure–Function Analysis Of Naturally Occurring Apolipoprotein A-I L144R, A164S And L178P Mutants Provides Insight On Their Role On Hdl Levels And Cardiovascular Risk. Cellular and Molecular Life Sciences 2020. Website
Mpakali, A. ; Saridakis, E. ; Giastas, P. ; Maben, Z. ; Stern, L. J. ; Larhed, M. ; Hallberg, M. ; Stratikos, E. Structural Basis Of Inhibition Of Insulin-Regulated Aminopeptidase By A Macrocyclic Peptidic Inhibitor. ACS Medicinal Chemistry Letters 2020, 11, 1429-1434. PubmedAbstract
Insulin-regulated aminopeptidase (IRAP) is a transmembrane zinc metallopeptidase with many important biological functions and an emerging pharmacological target. Although previous structural studies have given insight on how IRAP recognizes linear peptides, how it recognizes its physiological cyclic ligands remains elusive. Here, we report the first crystal structure of IRAP with the macrocyclic peptide inhibitor HA08 that combines structural elements from angiotensin IV and the physiological substrates oxytocin and vasopressin. The compound is found in the catalytic site in a near canonical substrate-like configuration and inhibits by a competitive mechanism. Comparison with previously solved structures of IRAP along with small-angle X-ray scattering experiments suggests that IRAP is in an open conformation in solution but undergoes a closing conformational change upon inhibitor binding. Stabilization of the closed conformation in combination with catalytic water exclusion by the tightly juxtaposed GAMEN loop is proposed as a mechanism of inhibition.
Liddle, J. ; Hutchinson, J. P. ; Kitchen, S. ; Rowland, P. ; Neu, M. ; Cecconie, T. ; Holmes, D. S. ; Jones, E. ; Korczynska, J. ; Koumantou, D. ; et al. Targeting The Regulatory Site Of Er Aminopeptidase 1 Leads To The Discovery Of A Natural Product Modulator Of Antigen Presentation. Journal of Medicinal Chemistry 2020. Publisher's Version
Stamatakis, G. ; Samiotaki, M. ; Mpakali, A. ; Panayotou, G. ; Stratikos, E. Generation Of Sars-Cov-2 S1 Spike Glycoprotein Putative Antigenic Epitopes In Vitro By Intracellular Aminopeptidases. J Proteome Res 2020. Publisher's VersionAbstract
Presentation of antigenic peptides by MHCI is central to cellular immune responses against viral pathogens. While adaptive immune responses versus SARS-CoV-2 can be of critical importance to both recovery and vaccine efficacy, how protein antigens from this pathogen are processed to generate antigenic peptides is largely unknown. Here, we analyzed the proteolytic processing of overlapping precursor peptides spanning the entire sequence of the S1 spike glycoprotein of SARS-CoV-2, by three key enzymes that generate antigenic peptides, aminopeptidases ERAP1, ERAP2, and IRAP. All enzymes generated shorter peptides with sequences suitable for binding onto HLA alleles, but with distinct specificity fingerprints. ERAP1 was the most efficient in generating peptides 8-11 residues long, the optimal length for HLA binding, while IRAP was the least efficient. The combination of ERAP1 with ERAP2 greatly limited the variability of peptide sequences produced. Less than 7% of computationally predicted epitopes were found to be produced experimentally, suggesting that aminopeptidase processing may constitute a significant filter to epitope presentation. These experimentally generated putative epitopes could be prioritized for SARS-CoV-2 immunogenicity studies and vaccine design. We furthermore propose that this in vitro trimming approach could constitute a general filtering method to enhance the prediction robustness for viral antigenic epitopes.