Multiple Spectral Components in Large-Scale Jets


Meyer E, Georganopoulos M, Petropoulou M, Breiding P. Multiple Spectral Components in Large-Scale Jets. In: Vol. 231. ; 2018. pp. 323.02.

Date Presented:



One of the most striking discoveries of the Chandra X-ray Observatory is the population of bright X-ray emitting jets hosted by powerful quasars. Most of these jets show hard X-ray spectra which requires a separate spectral component compared with the radio-optical synchrotron emission, which usually peaks at or before the infrared. Though the origin of this high-energy spectral component has been a matter of debate for nearly two decades, it is still not understood, with major implications for our understanding of particle acceleration in jets, as well as the total energy carried by them. Until recently the prevailing interpretation for the second component has been inverse-Compont upscattering of the CMB by a still highly relativistic jet at kpc scales. I will briefly describe the recent work calling the IC/CMB model into serious question (including X-ray variability, UV polarization, gamma-ray upper limits, and proper motions), and present new results, based on new ALMA, HST, and Chandra observations, which suggest that more than two distinct spectral components may be present in some large-scale jets, and that these multiple components appear to arise in jets across the full range in jet power, and not just in the most powerful sources. These results are very difficult to reconcile with simple models of jet emission, and I will discuss these failures and some possible directions for the future, including hadronic models.