Selected Publications

2017
Papadaki GF, Amillis S, Diallinas G. Substrate Specificity of the FurE Transporter Is Determined by Cytoplasmic Terminal Domain Interactions. Genetics. 2017.Abstract
FurE, a member of the NCS1 transporter family in Aspergillus nidulans, is specific for allantoin, uric acid, uracil and related analogues. Herein, we show that C- or N-terminally truncated FurE transporters (FurE-ΔC or FurE-ΔΝ) present increased protein stability, but also inability for uric acid transport. To better understand the role of cytoplasmic terminal regions, we characterized genetic suppressors that restore FurE-ΔC-mediated uric acid transport. Suppressors map in the periphery of the substrate-binding site (Thr133 in TMS3 and Val343 in TMS8), an outward-facing gate (Ser296 in TMS7, Ile371 in TMS9, Tyr392 and Leu394 in TMS10) or in flexible loops (Asp26 in LN, Gly222 in L5, Asn308 in L7). Selected suppressors were shown to also restore the wild-type specificity of FurE-ΔΝ, suggesting that both C- and/or N-terminal domains are involved in intramolecular dynamics critical for substrate selection. A direct, substrate-sensitive, interaction of C- and/or N-terminal domains was supported by bimolecular fluorescence complementation assays. To our knowledge, this is the first case where not only the function, but also, the specificity of a eukaryotic transporter is regulated by its terminal cytoplasmic regions.
Martzoukou O, Amillis S, Zervakou A, Christoforidis S, Diallinas G. The AP-2 complex has a specialized clathrin-independent role in apical endocytosis and polar growth in fungi. Elife. 2017;6.Abstract
Filamentous fungi provide excellent systems for investigating the role of the AP-2 complex in polar growth. Using Aspergillus nidulans, we show that AP-2 has a clathrin-independent essential role in polarity maintenance and growth. This is in line with a sequence analysis showing that the AP-2 β subunit (β2) of higher fungi lacks a clathrin-binding domain, and experiments showing that AP-2 does not co-localize with clathrin. We provide genetic and cellular evidence that AP-2 interacts with endocytic markers SlaB(End4) and SagA(End3) and the lipid flippases DnfA and DnfB in the sub-apical collar region of hyphae. The role of AP-2 in the maintenance of proper apical membrane lipid and cell wall composition is further supported by its functional interaction with BasA (sphingolipid biosynthesis) and StoA (apical sterol-rich membrane domains), and its essentiality in polar deposition of chitin. Our findings support that the AP-2 complex of dikarya has acquired, in the course of evolution, a specialized clathrin-independent function necessary for fungal polar growth.
de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 2017;18(1):28.Abstract
BACKGROUND: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. RESULTS: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. CONCLUSIONS: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.
Sioupouli G, Lambrinidis G, Mikros E, Amillis S, Diallinas G. Cryptic purine transporters in Aspergillus nidulans reveal the role of specific residues in the evolution of specificity in the NCS1 family. Mol Microbiol. 2017;103(2):319-332.Abstract
NCS1 proteins are H(+) or Na(+) symporters responsible for the uptake of purines, pyrimidines or related metabolites in bacteria, fungi and some plants. Fungal NCS1 are classified into two evolutionary and structurally distinct subfamilies, known as Fur- and Fcy-like transporters. These subfamilies have expanded and functionally diversified by gene duplications. The Fur subfamily of the model fungus Aspergillus nidulans includes both major and cryptic transporters specific for uracil, 5-fluorouracil, allantoin or/and uric acid. Here we functionally analyse all four A. nidulans Fcy transporters (FcyA, FcyC, FcyD and FcyE) with previously unknown function. Our analysis shows that FcyD is moderate-affinity, low-capacity, highly specific adenine transporter, whereas FcyE contributes to 8-azaguanine uptake. Mutational analysis of FcyD, supported by homology modelling and substrate docking, shows that two variably conserved residues (Leu356 and Ser359) in transmembrane segment 8 (TMS8) are critical for transport kinetics and specificity differences among Fcy transporters, while two conserved residues (Phe167 and Ser171) in TMS3 are also important for function. Importantly, mutation S359N converts FcyD to a promiscuous nucleobase transporter capable of recognizing adenine, xanthine and several nucleobase analogues. Our results reveal the importance of specific residues in the functional evolution of NCS1 transporters.
2016
Lougiakis N, Gavriil E-S, Kairis M, Sioupouli G, Lambrinidis G, Benaki D, Krypotou E, Mikros E, Marakos P, Pouli N, et al. Design and synthesis of purine analogues as highly specific ligands for FcyB, a ubiquitous fungal nucleobase transporter. Bioorg Med Chem. 2016.Abstract
In the course of our study on fungal purine transporters, a number of new 3-deazapurine analogues have been rationally designed, based on the interaction of purine substrates with the Aspergillus nidulans FcyB carrier, and synthesized following an effective synthetic procedure. Certain derivatives have been found to specifically inhibit FcyB-mediated [(3)H]-adenine uptake. Molecular simulations have been performed, suggesting that all active compounds interact with FcyB through the formation of hydrogen bonds with Asn163, while the insertion of hydrophobic fragments at position 9 and N6 of 3-deazaadenine enhanced the inhibition.
Diallinas G. Dissection of Transporter Function: From Genetics to Structure. Trends Genet. 2016.Abstract
Transporters are transmembrane proteins mediating the selective uptake or efflux of solutes, metabolites, drugs, or ions across cellular membranes. Despite their immense biological importance in cell nutrition, communication, signaling, and homeostasis, their study remains technically difficult mostly due to their lipid-embedded nature. The study of eukaryotic transporters presents additional complexity due to multiple subcellular control mechanisms that operate to ensure proper membrane traffic, membrane localization, and turnover. Model fungi present unique genetic tools to study eukaryotic transporter function. This review highlights how fungal transporter genetics combined with new methodologies for assaying their cellular expression and function as well as recent structural approaches have led to the functional dissection of selected transporter paradigms in Aspergillus nidulans.
Alguel Y, Amillis S, Leung J, Lambrinidis G, Capaldi S, Scull NJ, Craven G, Iwata S, Armstrong A, Mikros E, et al. Structure of eukaryotic purine/H(+) symporter UapA suggests a role for homodimerization in transport activity. Nat Commun. 2016;7:11336.Abstract
The uric acid/xanthine H(+) symporter, UapA, is a high-affinity purine transporter from the filamentous fungus Aspergillus nidulans. Here we present the crystal structure of a genetically stabilized version of UapA (UapA-G411VΔ1-11) in complex with xanthine. UapA is formed from two domains, a core domain and a gate domain, similar to the previously solved uracil transporter UraA, which belongs to the same family. The structure shows UapA in an inward-facing conformation with xanthine bound to residues in the core domain. Unlike UraA, which was observed to be a monomer, UapA forms a dimer in the crystals with dimer interactions formed exclusively through the gate domain. Analysis of dominant negative mutants is consistent with dimerization playing a key role in transport. We postulate that UapA uses an elevator transport mechanism likely to be shared with other structurally homologous transporters including anion exchangers and prestin.
Evangelinos M, Martzoukou O, Chorozian K, Amillis S, Diallinas G. BsdA(Bsd2) -dependent vacuolar turnover of a misfolded version of the UapA transporter along the secretory pathway: Prominent role of selective autophagy. Mol Microbiol. 2016.Abstract
Transmembrane proteins translocate co-translationally in the endoplasmic reticulum (ER) membrane and traffic as vesicular cargoes, via the Golgi, in their final membrane destination. Misfolding in the ER leads to protein degradation basically through the ERAD/proteasome system. Here, we use a mutant version of the purine transporter UapA (ΔR481) to show that specific misfolded versions of plasma membrane cargoes undergo vacuolar turnover prior to localization in the plasma membrane. We show that non-endocytic vacuolar turnover of ΔR481 is dependent on BsdA(Bsd2) , an ER transmembrane adaptor of HulA(Rsp5) ubiquitin ligase. We obtain in vivo evidence that BsdA(Bsd2) interacts with HulA(Rsp5) and ΔR481, primarily in the ER. Importantly, accumulation of ΔR481 in the ER triggers delivery of the selective autophagy marker Atg8 in vacuoles along with ΔR481. Genetic block of autophagy (atg9Δ, rabO(ts) ) reduces, but does not abolish, sorting of ΔR481 in the vacuoles, suggesting that a fraction of the misfolded transporter might be redirected for vacuolar degradation via the Golgi. Our results support that multiple routes along the secretory pathway operate for the detoxification of Aspergillus nidulans cells from misfolded membrane proteins, and that BsdA is key factor for marking specific misfolded cargoes. This article is protected by copyright. All rights reserved.
2015
Martzoukou O, Karachaliou M, Yalelis V, Leung J, Byrne B, Amillis S, Diallinas G. Oligomerization of the UapA purine transporter is critical for ER-exit, plasma membrane localization and turnover. J Mol Biol. 2015.Abstract
Central to the process of transmembrane cargo trafficking is the successful folding and exit from the ER through packaging in COPII vesicles. Here, we use the UapA purine transporter of Aspergillus nidulans to investigate the role of cargo oligomerization in membrane trafficking. We show that UapA oligomerizes (at least dimerizes) and that oligomerization persists upon UapA endocytosis and vacuolar sorting. Using a validated BiFC assay, we provide evidence that a UapA oligomerization is associated with ER exit and turnover, as ER-retained mutants, either due to modification of a Tyr-based N-terminal motif or partial misfolding, physically associate, but do not associate properly. Co-expression of ER-retained mutants with wild-type UapA leads to in trans plasma membrane localization of the former, confirming that oligomerization initiates in the ER. Genetic suppression of an N-terminal mutation in the Tyr motif and mutational analysis suggest that transmembrane α-helix 7 affects the oligomerization interface. Our results reveal that transporter oligomerization is essential for membrane trafficking and turnover and is a common theme in fungi and mammalian cells.
Kankipati HN, Rubio-Texeira M, Castermans D, Diallinas G, Thevelein JM. Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation. J Biol Chem. 2015.Abstract
Sulfate is an essential nutrient with pronounced regulatory effects on cellular metabolism and proliferation. Little is known, however, about how sulfate is sensed by cells. Sul1 and Sul2 are sulfate transporters in the yeast Saccharomyces cerevisiae, strongly induced upon sulfur starvation and endocytosed upon addition of sulfate. We reveal Sul1,2-dependent activation of protein kinase A (PKA) targets upon sulfate-induced exit from growth arrest after sulfur starvation. We provide two major arguments in favor of Sul1 and Sul2 acting as transceptors for signaling to PKA. First, the sulfate analogue, D-glucosamine 2-sulfate, acted as a non-transported agonist of signaling by Sul1 and Sul2. Second, mutagenesis to Gln of putative H+-binding residues, Glu427 in Sul1 or Glu443 in Sul2, abolished transport without affecting signaling. Hence, Sul1,2 can function as pure sulfate sensors. Sul1E427Q and Sul2E443Q are also deficient in sulfate-induced endocytosis, which can therefore be uncoupled from signaling. Overall, our data suggest that transceptors can undergo independent conformational changes each responsible for triggering different downstream processes. The Sul1 and Sul2 transceptors are the first identified plasma membrane sensors for extracellular sulfate. High-affinity transporters induced upon starvation for their substrate may generally act as transceptors during exit from starvation.
Krypotou E, Evangelidis T, Bobonis J, Pittis AA, Gabaldón T, Scazzocchio C, Mikros E, Diallinas G. Origin, diversification and substrate specificity in the family of NCS1/FUR transporters. Mol Microbiol. 2015.Abstract
NCS1 proteins are H(+) /Na(+) symporters specific for the uptake of purines, pyrimidines and related metabolites. In this article we study the origin, diversification and substrate specificity of fungal NCS1 transporters. We show that the two fungal NCS1 subfamilies, Fur and Fcy, and plant homologues, originate through independent horizontal transfers from prokaryotes, and that expansion by gene duplication led to the functional diversification of fungal NCS1. We characterized all Fur proteins of the model fungus Aspergillus nidulans and discovered novel functions and specificities. Homology modelling, substrate docking, molecular dynamics and systematic mutational analysis in three Fur transporters with distinct specificities identified residues critical for function and specificity, located within a major substrate binding site, in transmembrane segments TMS1, TMS3, TMS6 and TMS8. Most importantly, we predict and confirm that residues determining substrate specificity are located not only in the major substrate binding site, but also in a putative outward-facing selective gate. Our evolutionary and structure-function analysis contributes in the understanding of the molecular mechanisms underlying the functional diversification of eukaryotic NCS1 transporters, and in particular, forward the concept that selective channel-like gates might contribute to substrate specificity.
2014
Diallinas G. Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters. Front Pharmacol. 2014;5:207.Abstract
Transporters are ubiquitous proteins mediating the translocation of solutes across cell membranes, a biological process involved in nutrition, signaling, neurotransmission, cell communication and drug uptake or efflux. Similarly to enzymes, most transporters have a single substrate binding-site and thus their activity follows Michaelis-Menten kinetics. Substrate binding elicits a series of structural changes, which produce a transporter conformer open toward the side opposite to the one from where the substrate was originally bound. This mechanism, involving alternate outward- and inward-facing transporter conformers, has gained significant support from structural, genetic, biochemical and biophysical approaches. Most transporters are specific for a given substrate or a group of substrates with similar chemical structure, but substrate specificity and/or affinity can vary dramatically, even among members of a transporter family that show high overall amino acid sequence and structural similarity. The current view is that transporter substrate affinity or specificity is determined by a small number of interactions a given solute can make within a specific binding site. However, genetic, biochemical and in silico modeling studies with the purine transporter UapA of the filamentous ascomycete Aspergillus nidulans have challenged this dogma. This review highlights results leading to a novel concept, stating that substrate specificity, but also transport kinetics and transporter turnover, are determined by subtle intramolecular interactions between a major substrate binding site and independent outward- or cytoplasmically-facing gating domains, analogous to those present in channels. This concept is supported by recent structural evidence from several, phylogenetically and functionally distinct transporter families. The significance of this concept is discussed in relationship to the role and potential exploitation of transporters in drug action.
Krypotou E, Lambrinidis G, Evangelidis T, Mikros E, Diallinas G. Modelling, substrate docking and mutational analysis identify residues essential for function and specificity of the major fungal purine transporter AzgA. Molecular Microbiology [Internet]. 2014;93:129–145. Website
2013
Karachaliou M, Amillis S, Evangelinos M, Kokotos AC, Yalelis V, Diallinas G. The arrestin-like protein ArtA is essential for ubiquitination and endocytosis of the UapA transporter in response to both broad-range and specific signals. Mol Microbiol. 2013;88:301-17.Abstract
We investigated the role of all arrestin-like proteins of Aspergillus nidulans in respect to growth, morphology, sensitivity to drugs and specifically for the endocytosis and turnover of the uric acid-xanthine transporter UapA. A single arrestin-like protein, ArtA, is essential for HulA(Rsp) (5) -dependent ubiquitination and endocytosis of UapA in response to ammonium or substrates. Mutational analysis showed that residues 545-563 of the UapA C-terminal region are required for efficient UapA endocytosis, whereas the N-terminal region (residues 2-123) and both PPxY motives are essential for ArtA function. We further show that ArtA undergoes HulA-dependent ubiquitination at residue Lys-343 and that this modification is critical for UapA ubiquitination and endocytosis. Lastly, we show that ArtA is essential for vacuolar turnover of transporters specific for purines (AzgA) or l-proline (PrnB), but not for an aspartate/glutamate transporter (AgtA). Our results are discussed within the frame of recently proposed mechanisms on how arrestin-like proteins are activated and recruited for ubiquitination of transporters in response to broad range signals, but also put the basis for understanding how arrestin-like proteins, such as ArtA, regulate the turnover of a specific transporter in the presence of its substrates.
2012
Krypotou E, Kosti V, Amillis S, Myrianthopoulos V, Mikros E, Diallinas G. Modeling, substrate docking, and mutational analysis identify residues essential for the function and specificity of a eukaryotic purine-cytosine NCS1 transporter. J Biol Chem. 2012;287:36792-803.Abstract
The recent elucidation of crystal structures of a bacterial member of the NCS1 family, the Mhp1 benzyl-hydantoin permease from Microbacterium liquefaciens, allowed us to construct and validate a three-dimensional model of the Aspergillus nidulans purine-cytosine/H(+) FcyB symporter. The model consists of 12 transmembrane α-helical, segments (TMSs) and cytoplasmic N- and C-tails. A distinct core of 10 TMSs is made of two intertwined inverted repeats (TMS1-5 and TMS6-10) that are followed by two additional TMSs. TMS1, TMS3, TMS6, and TMS8 form an open cavity that is predicted to host the substrate binding site. Based on primary sequence alignment, three-dimensional topology, and substrate docking, we identified five residues as potentially essential for substrate binding in FcyB; Ser-85 (TMS1), Trp-159, Asn-163 (TMS3), Trp-259 (TMS6), and Asn-354 (TMS8). To validate the role of these and other putatively critical residues, we performed a systematic functional analysis of relevant mutants. We show that the proposed substrate binding residues, plus Asn-350, Asn-351, and Pro-353 are irreplaceable for FcyB function. Among these residues, Ser-85, Asn-163, Asn-350, Asn-351, and Asn-354 are critical for determining the substrate binding affinity and/or the specificity of FcyB. Our results suggest that Ser-85, Asn-163, and Asn-354 directly interact with substrates, Trp-159 and Trp-259 stabilize binding through π-π stacking interactions, and Pro-353 affects the local architecture of substrate binding site, whereas Asn-350 and Asn-351 probably affect substrate binding indirectly. Our work is the first systematic approach to address structure-function-specificity relationships in a eukaryotic member of NCS1 family by combining genetic and computational approaches.
Kosti V, Lambrinidis G, Myrianthopoulos V, Diallinas G, Mikros E. Identification of the substrate recognition and transport pathway in a eukaryotic member of the nucleobase-ascorbate transporter (NAT) family. PLoS One. 2012;7:e41939.Abstract
Using the crystal structure of the uracil transporter UraA of Escherichia coli, we constructed a 3D model of the Aspergillus nidulans uric acid-xanthine/H(+) symporter UapA, which is a prototype member of the Nucleobase-Ascorbate Transporter (NAT) family. The model consists of 14 transmembrane segments (TMSs) divided into a core and a gate domain, the later being distinctly different from that of UraA. By implementing Molecular Mechanics (MM) simulations and quantitative structure-activity relationship (SAR) approaches, we propose a model for the xanthine-UapA complex where the substrate binding site is formed by the polar side chains of residues E356 (TMS8) and Q408 (TMS10) and the backbones of A407 (TMS10) and F155 (TMS3). In addition, our model shows several polar interactions between TMS1-TMS10, TMS1-TMS3, TMS8-TMS10, which seem critical for UapA transport activity. Using extensive docking calculations we identify a cytoplasm-facing substrate trajectory (D360, A363, G411, T416, R417, V463 and A469) connecting the proposed substrate binding site with the cytoplasm, as well as, a possible outward-facing gate leading towards the substrate major binding site. Most importantly, re-evaluation of the plethora of available and analysis of a number of herein constructed UapA mutations strongly supports the UapA structural model. Furthermore, modeling and docking approaches with mammalian NAT homologues provided a molecular rationale on how specificity in this family of carriers might be determined, and further support the importance of selectivity gates acting independently from the major central substrate binding site.
2011
Amillis S, Kosti V, Pantazopoulou A, Mikros E, Diallinas G. Mutational analysis and modeling reveal functionally critical residues in transmembrane segments 1 and 3 of the UapA transporter. J Mol Biol. 2011;411:567-80.Abstract
Earlier, we identified mutations in the first transmembrane segment (TMS1) of UapA, a uric acid-xanthine transporter in Aspergillus nidulans, that affect its turnover and subcellular localization. Here, we use one of these mutations (H86D) and a novel mutation (I74D) as well as genetic suppressors of them, to show that TMS1 is a key domain for proper folding, trafficking and turnover. Kinetic analysis of mutants further revealed that partial misfolding and deficient trafficking of UapA does not affect its affinity for xanthine transport, but reduces that of uric acid and confers a degree of promiscuity towards the binding of other purines. This result strengthens the idea that subtle interactions among domains not directly involved in substrate binding refine the selectivity of UapA. Characterization of second-site suppressors of H86D revealed a genetic interaction of TMS1 with TMS3, the latter segment shown for the first time to be important for UapA function. Systematic mutational analysis of polar and conserved residues in TMS3 showed that Ser154 is crucial for UapA transport activity. Our results are in agreement with a topological model of UapA built on the recently published structure of UraA, a bacterial homolog of UapA.
2010
Conde A, Diallinas G, c}ois Chaumont F{\c, Chaves M, Gerós H. Transporters, channels, or simple diffusion? Dogmas, atypical roles and complexity in transport systems. Int J Biochem Cell Biol. 2010;42:857-68.Abstract
The recent breakthrough discoveries of transport systems assigned with atypical functions provide evidence for complexity in membrane transport biochemistry. Some channels are far from being simple pores creating hydrophilic passages for solutes and can, unexpectedly, act as enzymes, or mediate high-affinity uptake, and some transporters are surprisingly able to function as sensors, channels or even enzymes. Furthermore, numerous transport studies have demonstrated complex multiphasic uptake kinetics for organic and mineral nutrients. The biphasic kinetics of glucose uptake in Saccharomyces cerevisiae, a result of several genetically distinct uptake systems operating simultaneously, is a classical example that is a subject of continuous debate. In contrast, some transporters display biphasic kinetics, being bona fidae dual-affinity transporters, their kinetic properties often modulated by post-translational regulation. Also, aquaporins have recently been reported to exhibit diverse transport properties and can behave as highly adapted, multifunctional channels, transporting solutes such as CO(2), hydrogen peroxide, urea, ammonia, glycerol, polyols, carbamides, purines and pyrimidines, metalloids, glycine, and lactic acid, rather than being simple water pores. The present review provides an overview on some atypical functions displayed by transporter proteins and discusses how this novel knowledge on cellular uptake systems may be related to complex multiphasic uptake kinetics often seen in a wide variety of living organisms and the intriguing diffusive uptake of sugars and other solutes.
Gournas C, Amillis S, Vlanti A, Diallinas G. Transport-dependent endocytosis and turnover of a uric acid-xanthine permease. Mol Microbiol. 2010;75:246-60.Abstract
In this work we unmask a novel downregulation mechanism of the uric acid/xanthine transporter UapA, the prototype member of the ubiquitous Nucleobase-Ascorbate Transporter family, directly related to its function. In the presence of substrates, UapA is endocytosed, sorted into the multivesicular body pathway and degraded in vacuoles. Substrate-induced endocytosis, unlike ammonium-induced turnover, is absolutely dependent on UapA activity and several lines of evidence showed that the signal for increased endocytosis is the actual translocation of substrates through the UapA protein. The use of several UapA functional mutants with altered kinetics and specificity has further shown that transport-dependent UapA endocytosis occurs through a mechanism, which senses subtle conformational changes associated with the transport cycle. We also show that distinct mechanisms of UapA endocytosis necessitate ubiquitination of a single Lys residue (K572) by HulA(Rsp5). Finally, we demonstrate that in the presence of substrates, non-functional UapA versions can be endocytosed in trans if expressed in the simultaneous presence of active UapA versions, even if the latter cannot be endocytosed themselves.
Kosti V, Papageorgiou I, Diallinas G. Dynamic elements at both cytoplasmically and extracellularly facing sides of the UapA transporter selectively control the accessibility of substrates to their translocation pathway. J Mol Biol. 2010;397:1132-43.Abstract
In the UapA uric acid-xanthine permease of Aspergillus nidulans, subtle interactions between key residues of the putative substrate binding pocket, located in the TMS8-TMS9 loop (where TMS is transmembrane segment), and a specificity filter, implicating residues in TMS12 and the TMS1-TMS2 loop, are critical for function and specificity. By using a strain lacking all transporters involved in adenine uptake (DeltaazgA DeltafcyB DeltauapC) and carrying a mutation that partially inactivates the UapA specificity filter (F528S), we obtained 28 mutants capable of UapA-mediated growth on adenine. Seventy-two percent of mutants concern replacements of a single residue, R481, in the putative cytoplasmic loop TMS10-TMS11. Five missense mutations are located in TMS9, in TMS10 or in loops TMS1-TMS2 and TMS8-TMS9. Mutations in the latter loops concern residues previously shown to enlarge UapA specificity (Q113L) or to be part of a motif involved in substrate binding (F406Y). In all mutants, the ability of UapA to transport its physiological substrates remains intact, whereas the increased capacity for transport of adenine and other purines seems to be due to the elimination of elements that hinder the translocation of non-physiological substrates through UapA, rather than to an increase in relevant binding affinities. The additive effects of most novel mutations with F528S and allele-specific interactions of mutation R481G (TMS10-TMS11 loop) with Q113L (TMS1-TMS2 loop) or T526M (TMS12) establish specific interdomain synergy as a critical determinant for substrate selection. Our results strongly suggest that distinct domains at both sides of UapA act as selective dynamic gates controlling substrate access to their translocation pathway.
2008
Diallinas G, Gournas C. Structure-function relationships in the nucleobase-ascorbate transporter (NAT) family: lessons from model microbial genetic systems. Channels (Austin). 2008;2:363-72.
Papageorgiou I, Gournas C, Vlanti A, Amillis S, Pantazopoulou A, Diallinas G. Specific interdomain synergy in the UapA transporter determines its unique specificity for uric acid among NAT carriers. J Mol Biol. 2008;382:1121-35.Abstract
UapA, a uric acid-xanthine permease of Aspergillus nidulans, has been used as a prototype to study structure-function relationships in the ubiquitous nucleobase-ascorbate transporter (NAT) family. Using novel genetic screens, rational mutational design, chimeric NAT molecules, and extensive transport kinetic analyses, we show that dynamic synergy between three distinct domains, transmembrane segment (TMS)1, the TMS8-9 loop, and TMS12, defines the function and specificity of UapA. The TMS8-9 loop includes four residues absolutely essential for substrate binding and transport (Glu356, Asp388, Gln408, and Asn409), whereas TMS1 and TMS12 seem to control, through steric hindrance or electrostatic repulsion, the differential access of purines to the TMS8-9 domain. Thus, UapA specificity is determined directly by the specific interactions of a given substrate with the TMS8-9 loop and indirectly by interactions of this loop with TMS1 and TMS12. We finally show that intramolecular synergy among UapA domains is highly specific and propose that it forms the basis for the evolution of the unique specificity of UapA for uric acid, a property not present in other NAT members.
Gournas C, Papageorgiou I, Diallinas G. The nucleobase-ascorbate transporter (NAT) family: genomics, evolution, structure-function relationships and physiological role. Mol Biosyst. 2008;4:404-16.Abstract
This review summarizes knowledge concerning a ubiquitous plasma transmembrane protein family that mediates nucleobase or ascorbate secondary active transport (NAT). We show that prototype bacterial and mostly fungal members have become unique model systems to unravel structure-function relationships and regulation of expression, using classical and reverse genetics, as well as biochemical approaches. We discuss the importance of NAT-mediated ascorbate transport in mammals and how changes in substrate specificity, from different nucleobases to ascorbate, might have evolved at the molecular level. Finally, we also discuss how modelling NAT-purine interactions might constitute a step towards the use of NAT proteins as specific gateways for targeting pathogenic microbes.
Diallinas G. Biochemistry. An almost-complete movie. Science. 2008;322:1644-5.
Vlanti A, Diallinas G. The Aspergillus nidulans FcyB cytosine-purine scavenger is highly expressed during germination and in reproductive compartments and is downregulated by endocytosis. Mol Microbiol. 2008;68:959-77.Abstract
We cloned and characterized an Aspergillus nidulans gene, called fcyB, encoding the closest homologue to the yeast Fcy2p/Fcy21p permeases. Deletion of fcyB (DeltafcyB) does not affect growth, development, reproduction or bulk purine uptake, but eliminates the leaky growth on purines of DeltaazgADeltauapCDeltauapA strains, lacking all known purine transporters, and confers resistance to the antifungal 5-fluorocytosine. Kinetic analyses showed FcyB is a low-capacity, high-affinity, cytosine-purine transporter sharing similar molecular interactions for substrate recognition with the yeast Fcy2p/Fcy21p carriers. fcyB transcription is highly activated during germination but drops at low constitutive levels throughout vegetative development. UaY-mediated purine induction of fcyB transcription is only moderate, while ammonium represses transcription through an AreA-dependent mechanism. A strain expressing FcyB-GFP confirms a low protein expression level in the plasma membrane of vegetative mycelia, but reveals an abundant expression in sexual and asexual compartments. FcyB-GFP was also shown to be downregulated by endocytosis in response to ammonia or the presence of cytosine. The expression profile of FcyB supports that its main physiological role is cytosine-purine scavenging.
2007
Pantazopoulou A, Diallinas G. Fungal nucleobase transporters. FEMS Microbiol Rev. 2007;31:657-75.Abstract
Early genetic and physiological work in bacteria and fungi has suggested the presence of highly specific nucleobase transport systems. Similar transport systems are now known to exist in algae, plants, protozoa and metazoa. Within the last 15 years, a small number of microbial genes encoding nucleobase transporters have been cloned and studied in great detail. The sequences of several other putative proteins submitted to databases are homologous to the microbial nucleobase transporters but their physiological functions remain largely undetermined. In this review, genetic, biochemical and molecular data are described concerning mostly the nucleobase transporters of Aspergillus nidulans and Saccharomyces cerevisiae, the two model ascomycetes from which the great majority of data come from. It is also discussed as to what is known on the nucleobase transporters of the two most significant pathogenic fungi: Candida albicans and Aspergillus fumigatus. Apart from highlighting how a basic process such as nucleobase recognition and transport operates, this review intends to highlight features that might be applicable to antifungal pharmacology.
2006
Vlanti A, Amillis S, Koukaki M, Diallinas G. A novel-type substrate-selectivity filter and ER-exit determinants in the UapA purine transporter. J Mol Biol. 2006;357:808-19.Abstract
We present a functional analysis of the last alpha-helical transmembrane segment (TMS12) of UapA, a uric acid-xanthine/H+ symporter in Aspergillus nidulans and member of the nucleobase-ascorbate transporter (NAT) family. First, we performed a systematic mutational analysis of residue F528, located in the middle of TMS12, which was known to be critical for UapA specificity. Substitution of F528 with non-aromatic amino acid residues (Ala, Thr, Ser, Gln, Asn) did not affect significantly the kinetics of UapA for its physiological substrates, but allowed high-capacity transport of several novel purines and pyrimidines. Allele-specific combinations of F528 substitutions with mutations in Q408, a residue involved in purine binding, led to an array of UapA molecules with different kinetic and specificity profiles. We propose that F528 plays the role of a novel-type selectivity filter, which, in conjunction with a distinct purine-binding site, control UapA-mediated substrate translocation. We further studied the role of TMS12 by analysing the effect of its precise deletion and chimeric molecules in which TMS12 was substituted with analogous domains from other NATs. The presence of any of the TMS12 tested was necessary for ER-exit while their specific amino acid composition affected the kinetics of chimeras.