Gardelis S, Fakis M, Droseros N, Georgiadou D, Travlos A, Nassiopoulou AG.
Energy transfer in aggregated CuInS2/ZnS core-shell quantum dots deposited as solid films. Journal of Physics D: Applied Physics [Internet]. 2017;50.
WebsiteAbstractWe report on the morphology and optical properties of CuInS2/ZnS core-shell quantum dots in solid films by means of AFM, SEM, HRTEM, steady state and time-resolved photoluminescence (PL) spectroscopy. The amount of aggregation of the CuInS2/ZnS QDs was controlled by changing the preparation conditions of the films. A red-shift of the PL spectrum of CuInS2/ZnS core-shell quantum dots, deposited as solid films on silicon substrates, is observed upon increasing the amount of aggregation. The presence of larger aggregates was found to lead to a larger PL red-shift. Besides, as the degree of aggregation increased, the PL decay became slower. We attribute the observed PL red-shift to energy transfer from the smaller to the larger dots within the aggregates, with the emission being realized via a long decay recombination mechanism (100-200 ns), the origin of which is discussed. © 2016 IOP Publishing Ltd.