Publications by Year: 2018

2018
Tountas M, Verykios A, Polydorou E, Kaltzoglou A, Soultati A, Balis N, Angaridis PA, Papadakis M, Nikolaou V, Auras F, et al. Engineering of Porphyrin Molecules for Use as Effective Cathode Interfacial Modifiers in Organic Solar Cells of Enhanced Efficiency and Stability. ACS Applied Materials and Interfaces [Internet]. 2018;10:20728-20739. WebsiteAbstract
In the present work, we effectively modify the TiO2 electron transport layer of organic solar cells with an inverted architecture using appropriately engineered porphyrin molecules. The results show that the optimized porphyrin modifier bearing two carboxylic acids as the anchoring groups and a triazine electron-withdrawing spacer significantly reduces the work function of TiO2, thereby reducing the electron extraction barrier. Moreover, the lower surface energy of the porphyrin-modified substrate results in better physical compatibility between the latter and the photoactive blend. Upon employing porphyrin-modified TiO2 electron transport layers in PTB7:PC71BM-based organic solar cells we obtained an improved average power conversion efficiency up to 8.73%. Importantly, porphyrin modification significantly increased the lifetime of the devices, which retained 80% of their initial efficiency after 500 h of storage in the dark. Because of its simplicity and efficacy, this approach should give tantalizing glimpses and generate an impact into the potential of porphyrins to facilitate electron transfer in organic solar cells and related devices. © 2018 American Chemical Society.
Tountas M, Georgiadou DG, Zeniou A, Seintis K, Soultati A, Polydorou E, Gardelis S, Douvas AM, Speliotis T, Tsikritzis D, et al. Plasma induced degradation and surface electronic structure modification of Poly(3-hexylthiophene) films. Polymer Degradation and Stability [Internet]. 2018;149:162-172. WebsiteAbstract
Plasma treatment is an environmentally friendly solution for modifying or nanostructuring the surface of several materials including photoactive polymers. The detailed characterization of the effect of plasma treatment on chemical and optoelectronic properties of photoactive polymers is, therefore, of specific interest. Herein, the effect of the exposure of poly(3-hexylthiophene) (P3HT) thin films to plasma created in three different gases (oxygen, argon and hydrogen) was studied. A range of spectroscopic techniques, such as x-ray (XPS) and ultraviolet (UPS) photoelectron spectroscopy in conjunction with UV–vis absorption, Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopies, are employed to quantify the extent of chemical modification occurring in each particular case. It is shown that oxygen plasma treatment leads to the disruption of the π-conjugation via the direct oxidation of the sulfur atom of the thiophene ring while the aliphatic side chain remains nearly unaffected. An oxidation mechanism is proposed according to which the sulfur atom of the thiophene ring is oxidized into sulfoxides and sulfones, which subsequently degraded into sulfonates or sulfonic acids in a relatively small degree. For argon and hydrogen plasma treatments some oxidation products are detected only at the polymer surface. In all cases the polymer surface Fermi level is shifted closer to the highest occupied molecular orbital (HOMO) energy after plasma treatment indicating p-type doping arising from surface oxidation. © 2017 Elsevier Ltd
Tountas M, Topal Y, Verykios A, Soultati A, Kaltzoglou A, Papadopoulos TA, Auras F, Seintis K, Fakis M, Palilis LC, et al. A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO and TiO2 cathode interlayers for highly efficient and extremely stable polymer solar cells. Journal of Materials Chemistry C [Internet]. 2018;6:1459-1469. WebsiteAbstract
Combining high efficiency and long lifetime under ambient conditions still poses a major challenge towards commercialization of polymer solar cells. Here we report a facile strategy that can simultaneously enhance the efficiency and temporal stability of inverted photovoltaic architectures. Inclusion of a silanol-functionalized organic-inorganic hybrid polyoxometalate derived from a PW9O34 lacunary phosphotungstate anion, namely (nBu4N)3[PW9O34(tBuSiOH)3], significantly increases the effectiveness of the electron collecting interface, which consists of a metal oxide such as titanium dioxide or zinc oxide, and leads to a high efficiency of 6.51% for single-junction structures based on poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:IC60BA) blends. The above favourable outcome stems from a large decrease in the work function, an effective surface passivation and a decrease in the surface energy of metal oxides which synergistically result in the outstanding electron transfer mediating capability of the functionalized polyoxometalate. In addition, the insertion of a silanol-functionalized polyoxometalate layer significantly enhances the ambient stability of unencapsulated devices which retain nearly 90% of their original efficiencies (T90) after 1000 hours. © 2018 The Royal Society of Chemistry.
Mahdouani M, Gardelis S, Bourguiga R. The effect of Si impurities on the transport properties and the electron-surface phonon interaction in single layer graphene deposited on polar substrates. Physica B: Condensed Matter [Internet]. 2018;550:171-178. WebsiteAbstract
We investigated theoretically the effect of introducing Si impurities in a single layer graphene (1LG) that had been deposited on a polar substrate on the transport properties of the graphene layer. We consider in our analysis the scattering effects due to the surface optical (SO) phonons located at the interface of the 1LG with various polar substrates such asSiC, hexagonal BN,SiO2andHfO2. Our results demonstrate a reduction of SO phonon-limited (SOPL) mobility, and SOPL conductivity as well as an increase of the SOPL resistivity and of the scattering rate in the presence of Si impurities in the 1LG. Further, we studied the effect of Si impurities on the electron-surface phonon interaction. For our analysis we used the eigenenergies aquired from the tight-binding Hamiltonian in 1LG. Indeed the presence of the Si impurities induces a decrement in the resonant coupling between the electronic sub-levels and the surface vibration modes in monolayer graphene deposited on polar substrates. Finally, we investigated the effect of Si impurities on the Auger scattering process which affects the carriers relaxation. Our results show an enhancement of the Auger scattering rate in the case of the Si-doped 1LG compared to the undoped 1LG. © 2018 Elsevier B.V.
Verykios A, Papadakis M, Soultati A, Skoulikidou M-C, Papaioannou G, Gardelis S, Petsalakis ID, Theodorakopoulos G, Petropoulos V, Palilis LC, et al. Functionalized Zinc Porphyrins with Various Peripheral Groups for Interfacial Electron Injection Barrier Control in Organic Light Emitting Diodes. ACS Omega [Internet]. 2018;3:10008-10018. WebsiteAbstract
Here, we use a simple and effective method to accomplish energy level alignment and thus electron injection barrier control in organic light emitting diodes (OLEDs) with a conventional architecture based on a green emissive copolymer. In particular, a series of functionalized zinc porphyrin compounds bearing π-delocalized triazine electron withdrawing spacers for efficient intramolecular electron transfer and different terminal groups such as glycine moieties in their peripheral substitutes are employed as thin interlayers at the emissive layer/Al (cathode) interface to realize efficient electron injection/transport. The effects of spatial (i.e., assembly) configuration, molecular dipole moment and type of peripheral group termination on the optical properties and energy level tuning are investigated by steady-state and time-resolved photoluminescence spectroscopy in F8BT/porphyrin films, by photovoltage measurements in OLED devices and by surface work function measurements in Al electrodes modified with the functionalized zinc porphyrins. The performance of OLEDs is significantly improved upon using the functionalized porphyrin interlayers with the recorded luminance of the devices to reach values 1 order of magnitude higher than that of the reference diode without any electron injection/transport interlayer. © 2018 American Chemical Society.
Balis N, Verykios A, Soultati A, Constantoudis V, Papadakis M, Kournoutas F, Drivas C, Skoulikidou M-C, Gardelis S, Fakis M, et al. Triazine-Substituted Zinc Porphyrin as an Electron Transport Interfacial Material for Efficiency Enhancement and Degradation Retardation in Planar Perovskite Solar Cells. ACS Applied Energy Materials [Internet]. 2018;1:3216-3229. WebsiteAbstract
Motivated by the excellent electron-transfer capability of porphyrin molecules in natural photosynthesis, we introduce here the first application of a porphyrin compound to improve the performance of planar perovskite solar cells. The insertion of a thin layer consisting of a triazine-substituted Zn porphyrin between the TiO2 electron transport layer and the CH3NH3PbI3 perovskite film significantly augmented electron transfer toward TiO2 while also sufficiently improved the morphology of the perovskite film. The devices employing porphyrin-modified TiO2 exhibited a significant increase in the short-circuit current densities and a small increase in the fill factor. As a result, they delivered a maximum power conversion efficiency (PCE) of 16.87% (average 14.33%), which represents a 12% enhancement compared to 15.01% (average 12.53%) of the reference cell. Moreover, the porphyrin-modified cells exhibited improved hysteretic behavior and a higher stabilized power output of 14.40% compared to 10.70% of the reference devices. Importantly, nonencapsulated perovskite solar cells embedding a thin porphyrin interlayer showed an elongated lifetime retaining 86% of the initial PCE after 200 h, while the reference devices exhibited higher efficiency loss due to faster decomposition of CH3NH3PbI3 to PbI2. © 2018 American Chemical Society.