. CLIL. Journal of Innovation and Research in Plurilingual and Pluricultural Education [Internet]. 2020;3(2):15-36. Publisher's VersionAbstract
This paper is a qualitative study in the framework of a broader project (LETEGR2) that aims to shed light on the way classroom-based observation might contribute to bridging the gap between teaching theory and practice and assisting teacher education. It draws on data derived from pre-service (n=15) and in-service teachers (n=6) who applied the LETEGR2 Classroom Observation protocol in second language classrooms in Greece. Both groups of data are presented according to the observation stages (pre- and post-) in which they have been collected. They are discussed as pre- and in-service teachers’ “voices” in terms of the main issues they bring to the fore in relation to L2 learners’ profiles, the teaching process and teachers’ practices. An attempt is made to link both group of participants’ observed behaviours and events to underlying theoretical concepts for second language learning and teaching.
During the last few years, olive oil quality and adulteration control has increased since it is of great importance to consumers, suppliers and retailers. Different analytical methods and parameters combined with statistical methods are used to detect the authenticity and adulteration of extra virgin oil in a global Foodomics approach. In the present chapter, the application of different analytical techniques and chemometrics for the determination of extra virgin olive oil authenticity including adulteration are discussed. Finally, the latest trends on analytical approaches to assess the olive oil geographical and varietal origin traceability are also examined.
Small heat shock proteins (sHSPs) participate in numerous cellular functions including cell signaling, differentiation, and apoptosis. Deregulation of the physiological expression level of sHSPs has been associated with several malignancies. Heat shock protein beta 3 (HSPB3) is the third member of the sHSP family in human and is mainly expressed in skeletal and smooth muscles. In this study, we investigated the potential prognostic significance of HSPB3 expression in colorectal adenocarcinoma, the most frequent type of colorectal cancer. For this purpose, we isolated total RNA from 188 colorectal adenocarcinoma specimens and 68 paired noncancerous ones. After reverse transcription of 2 $μ$g total RNA, we quantified HSPB3 levels by using an in-house–developed real-time quantitative polymerase chain reaction method, based on the SYBR Green chemistry. Comparison of HSPB3 levels among 68 pairs of colorectal tumors and their adjacent noncancerous mucosae uncovered the downregulation of HSPB3 expression in the majority of malignant colorectal tumors. More importantly, high HSPB3 expression is associated with poor relapse-free survival (RFS) and overall survival (OS) of patients with colorectal adenocarcinoma. Multivariable Cox regression analysis revealed that HSPB3 overexpression could serve as an adverse prognostic biomarker in colorectal adenocarcinoma, independent of tumor location, histological grade, and TNM stage. Patients' stratification according to tumor location, histological grade, and TNM stage revealed that high HSPB3 messenger RNA expression retains its unfavorable prognostic potential regarding OS, in particular groups of patients with substantially different prognosis. In conclusion, high HSPB3 expression is associated with poor RFS and OS of patients with colorectal adenocarcioma, independently of clinicopathological prognosticators.
Dual-modality contrast agents (DMCA), such as radiolabeled magnetic nanoparticles, have attracted significant attention in diagnostic applications due to their potency for the timely and accurate diagnosis of diseases. The hemocompatibility of a candidate DMCA with human blood is essential for the investigation of its application in vivo. In this respect, here we focused on the evaluation of the hemocompatibility of a new DMCA, that is based on iron oxide nanoparticles (i.e. Fe3O4 magnetite), with human red blood cells (RBCs). The specific iron oxide nanoparticles are surface functionalized with 2,3-dicarboxypropane-1,1-diphosphonic acid (-DPD) and radiolabeled with gallium-68 (Ga-68), resulting in Ga-68-DPD-Fe3O4. RBCs of five healthy individuals are incubated at room temperature for 120 min without and with Ga-68-DPD-Fe3O4 at concentrations 0.1 and 1.0 mg/ml. Optical microscopy (OM) and atomic force microscopy (AFM) are employed to assess detailed information on the overall morphological and geometrical characteristics of the entire cell at the microscopic (10(-6) m) level and on the membrane morphology at the nanoscopic (10(-9) m) level. In addition, a standard hematology analyzer (HA) is used to obtain complete blood count information. At the microscopic level, the combined OM, AFM and HA data revealed that the overall shape/size characteristics of RBCs were preserved upon incubation with Ga-68-DPD-Fe3O4 . However, at the nanoscopic level, the AFM results revealed two different kinds of local deconstructions of the RBCs membrane, termed holes and ulcerlike abnormalities, that were observed in both the DMCA-free and DMCA-incubated samples. Holes did not exhibit any statistically significant difference upon incubation with the Ga-68-DPD-Fe3O4 DMCA. On the contrary, ulcer-like abnormalities exhibited two statistically significant differences upon incubation with the Ga-68-DPD-Fe3O4 DMCA. First, increased percentage of RBCs having at least one ulcer-like abnormality; in DMCA-incubated samples 78.6 +/- 11.6% for C-DMCA = 0.1 mg/ml and 80.4 +/- 11.1% for C-DMCA = 1.0 mg/ml, while in DMCA-free samples 61.2 +/- 8.4% prior to and 63.6 +/- 13.5% after incubation. Second, increased number of ulcer-like abnormalities per RBC; in DMCA-incubated samples 4.26 +/- 0.62 for C-DMCA = 0.1 mg/ml and 3.99 +/- 0.97 for C-DMCA = 1.0 mg/ml, while in DMCA-free samples 2.84 +/- 0.54 prior to and 2.98 +/- 0.50 after incubation. The combined OM, AFM and HA results prove fair hemocompatibility of the Ga-68-DPD-Fe3O4 DMCA with human RBCs, thus documenting its potential use in imaging applications.
BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) may develop in chronic hepatitis (CHB) patients even after 5 years of oral therapy and cannot be easily predicted. We assessed predictors and need for HCC surveillance in this setting. METHODS: Of 1951 adult Caucasians with CHB included in the PAGE-B cohort, 1427 (73%) have completed follow-up >5 years under therapy without HCC until year 5. Median follow-up has been 8.4 years from treatment onset. Points-based risk scores were developed to predict HCC risk after year 5. RESULTS: In years 5-12, HCC has been diagnosed in 33/1427 (2.3%) patients with cumulative incidence 2.4%, 3.2% and 3.8% at 8, 10 and 12 years, respectively. Older age or age >50 years, baseline cirrhosis and liver stiffness (LSM) >/=12 kPa at year 5 were independently associated with increased HCC risk. The HCC incidence was lower in non-cirrhotics than those with baseline cirrhosis and year-5 LSM <12 kPa than those with baseline cirrhosis and year-5 LSM >/=12 kPa. CAGE-B score was based on age at year 5 and baseline cirrhosis in relation to LSM at year 5 and SAGE-B score was based only on age and LSM at year 5 (c-index=0.809-0.814, 0.805-0.806 after bootstrap validation). Both scores offered 100% negative predictive values for HCC development in their low risk groups. CONCLUSIONS: In Caucasians with CHB, the HCC risk after the first 5 years of antiviral therapy depends on age, baseline cirrhosis status and LSM at year 5. CAGE-B and particularly SAGE-B represent simple and reliable risk scores for HCC prediction and surveillance beyond year 5 of therapy.
Objectives: Clusterin (CLU) is a multifunctional intra-/extra-cellular molecular chaperone with indications of serving as a promising prognostic biomarker for colorectal cancer (CRC). Several studies have examined the potential prognostic value of the CLU protein in CRC; however, our research follows an alternative approach, focusing on the CLU mRNA expression. Design and methods: Total RNA from 172 cancerous tissue specimens and 39 paired non-cancerous ones was isolated and 2 $μ$g of this were subjected to reverse transcription with an oligo-dT primer. The single stranded DNA, which was synthesized, was amplified with an in-house developed highly sensitive and precise qPCR method, using specific pair of primers for the CLU molecule. Finally, an extensive biostatistical analysis took place for the assessment of the results. Results: Patients with tumors expressing high CLU mRNA levels had a higher probability for poor outcome (relapse and death), comparing to those with CLU mRNA-negative tumors. This association between CLU mRNA expression status and both disease-free survival (DFS) and overall survival (OS) is evident in Cox regression analysis and is also depicted in the Kaplan-Meier survival curves. Consistently, the aforementioned associations and the CLU mRNA expression levels are significantly enhanced as CRC tumors progress from TNM stage I to IV, further supporting the functional implication of CLU in tumorigenesis. Conclusions: High CLU mRNA levels in CRC tumors can act as a new adverse prognostic biomarker of DFS and OS for CRC, independent of clinicopathological and biological features of the patient.
Remote sensing techniques and laser scanning technology have given us the opportunity to study indoor environments, such as caves, with their complex and unique morphology. In the presented case study, we used a handheld laser scanner for acquiring points with projected coordinate information (X, Y, Z) covering the entire show cave of Koutouki; including its hidden passages and dark corners. The point cloud covers the floor, the walls, and the roof of the cave, as well as the stalactites, stalagmites and the connected columns that constitute the decoration of the cave. The absolute and exact placement of the point cloud within a geographic reference frame gives us the opportunity for three-dimensional measurements and detailed visualization of the subsurface structures. Using open - source software, we managed to make a quantification analysis of the terrain and generated morphological and geometric features of the speleothems. We identified 55 columns by using digital terrain analysis and processed them statistically in order to correlate them to the frame of the cave development. The parameters that derived are the contours, each column height, the speleothem geometry and volume, as well as the volume of the open space cavity. We argue that by the demonstrated methodology, it is possible to identify with high accuracy and detail: the geomorphological features of a cave, an estimate of the speleogenesis, and the ability to monitor the evolution of a karstic system.
Tidal disruption events (TDE) have been considered as cosmic-ray and neutrino sources for a decade. We suggest two classes of new scenarios for high-energy multi-messenger emission from TDEs that do not have to harbor powerful jets. First, we investigate high-energy neutrino and gamma-ray production in the core region of a supermassive black hole. In particular, we show that ∼1-100 TeV neutrinos and MeV gamma rays can efficiently be produced in hot coronae around an accretion disk. We also study the consequences of particle acceleration in radiatively inefficient accretion flows (RIAFs). Second, we consider possible cosmic-ray acceleration by sub-relativistic disk-driven winds or interactions between tidal streams, and show that subsequent hadronuclear and photohadronic interactions inside the TDE debris lead to GeV-PeV neutrinos and sub-GeV cascade gamma rays. We demonstrate that these models should be accompanied by soft gamma rays or hard X-rays as well as optical/UV emission, which can be used for future observational tests. Although this work aims to present models of non-jetted high-energy emission, we discuss the implications of the TDE AT2019dsg that might coincide with the high-energy neutrino IceCube-191001A, by considering the corona, RIAF, hidden sub-relativistic wind, and hidden jet models. It is not yet possible to be conclusive about their physical association and the expected number of neutrinos is typically much less than unity. We find that the most optimistic cases of the corona and hidden wind models could be consistent with the observation of IceCube-191001A, whereas jet models are unlikely to explain the multi-messenger observations.
BACKGROUND: Aristotle was a seek-test-treat intervention during an outbreak of human immunodeficiency virus (HIV) infection among people who inject drugs (PWID) in Athens, Greece that started in 2011. The aims of this analysis were: (1) to study changes of drug injection-related and sexual behaviors over the course of Aristotle; and (2) to compare the likelihood of risky behaviors among PWID who were aware and unaware of their HIV status. METHODS: Aristotle (2012-2013) involved five successive respondent-driven sampling rounds of approximately 1400 PWID each; eligible PWID could participate in multiple rounds. Participants were interviewed using a questionnaire, were tested for HIV, and were classified as HIV-positive aware of their status (AHS), HIV-positive unaware of their status (UHS), and HIV-negative. Piecewise linear generalized estimating equation models were used to regress repeatedly measured binary outcomes (high-risk behaviors) against covariates. RESULTS: Aristotle recruited 3320 PWID (84.5% males, median age 34.2 years). Overall, 7110 interviews and blood samples were collected. The proportion of HIV-positive first-time participants who were aware of their HIV infection increased from 21.8% in round A to 36.4% in the last round. The odds of dividing drugs at least half of the time in the past 12 months with a syringe someone else had already used fell from round A to B by 90% [Odds Ratio (OR) (95% Confidence Interval-CI): 0.10 (0.04, 0.23)] among AHS and by 63% among UHS [OR (95% CI): 0.37 (0.19, 0.72)]. This drop was significantly larger (p = 0.02) among AHS. There were also decreases in frequency of injection and in receptive syringe sharing in the past 12 months but they were not significantly different between AHS (66 and 47%, respectively) and UHS (63 and 33%, respectively). Condom use increased only among male AHS from round B to the last round [OR (95% CI): 1.24 (1.01, 1.52)]. CONCLUSIONS: The prevalence of risky behaviors related to drug injection decreased in the context of Aristotle. Knowledge of HIV infection was associated with safer drug injection-related behaviors among PWID. This highlights the need for comprehensive interventions that scale-up HIV testing and help PWID become aware of their HIV status.
Summary During 2011–16, HIV outbreaks occurred among people who inject drugs (PWID) in Canada (southeastern Saskatchewan), Greece (Athens), Ireland (Dublin), Israel (Tel Aviv), Luxembourg, Romania (Bucharest), Scotland (Glasgow), and USA (Scott County, Indiana). Factors common to many of these outbreaks included community economic problems, homelessness, and changes in drug injection patterns. The outbreaks differed in size (from under 100 to over 1000 newly reported HIV cases among PWID) and in the extent to which combined prevention had been implemented before, during, and after the outbreaks. Countries need to ensure high coverage of HIV prevention services and coverage higher than the current UNAIDS recommendation might be needed in areas in which short acting drugs are injected. In addition, monitoring of PWID with special attention for changing drug use patterns, risk behaviours, and susceptible subgroups (eg, PWID experiencing homelessness) needs to be in place to prevent or rapidly detect and contain new HIV outbreaks.
We study hole transfer in open cumulenic and polyynic nanowires made of N carbon atoms, using real-time time-dependent density functional theory (RT-TDDFT) and tight-binding (TB) wire models. For RT-TDDFT, we mainly use functional B3LYP and basis sets cc-pVDZ, cc-pVTZ, and cc-pVQZ, obtaining clear convergence; cc-pVTZ is the smallest basis set of sufficient quality; cc-pVQZ is better with a higher computational cost. For TB, we use a simplistic wire model where all sites are equivalent (TBI) and models with modified initial and final sites, mimicking the existence of one or two or three hydrogens at edge sites (TBImod, TBImodt4times). We compare the ground state energy, EGS, obtained by density functional theory (DFT) for cumulenic molecules with coplanar (co) or perpendicular (pe) methylene end groups as well as polyynic molecules starting with short (sl) or with long (ls) C–C bonds. For odd N, cumulenic pe molecules have lower EGS than cumulenic co molecules, that are probably transition states. We examine energy spectra, density of states, energy gap, charge oscillations, mean over time probabilities to find the hole at each site, coherent transfer rates, electric dipole moment, and frequency content. DFT shows that due to the impact of end groups, there exists a cumulenic energy gap, smaller than the polyynic one. TBI and TBImod reproduce approximately the magnitude of the energy gap in the polyynic case at the limit of large N. TBImod is capable of predicting the same site occupations with the nicely converged RT-TDDFT ones for the cumulenic case. However, charge and dipole moment oscillations as well as transfer rates by RT-TDDFT are approximately four times faster than those by TBImod. The site occupations of polyynic sl and of polyynic ls molecules are modified relative to cumulenic molecules; the trends can be explained qualitatively.
We investigate hole transfer in open carbynes, i.e., carbon atomic nanowires, using Real-Time Time-Dependent Density Functional Theory (RT-TDDFT). The nanowire is made of N carbon atoms. We use the functional B3LYP and the basis sets 3-21G, 6-31G*, cc-pVDZ, cc-pVTZ, cc-pVQZ. We also utilize a few Tight-Binding (TB) wire models, a very simple model with all sites equivalent and transfer integrals given by the Harrison ppπ">ppπ expression (TBI) as well as a model with modified initial and final sites (TBImod) to take into account the presence of one or two or three hydrogen atoms at the edge sites. To achieve similar site occupations in cumulenes with those obtained by converged RT-TDDFT, TBImod is sufficient. However, to achieve similar frequency content of charge and dipole moment oscillations and similar coherent transfer rates, the TBImod transfer integrals have to be multiplied by a factor of four (TBImodt4times). An explanation for this is given. Full geometry optimization at the B3LYP/6-31G* level of theory shows that in cumulenes bond length alternation (BLA) is not strictly zero and is not constant, although it is symmetrical relative to the molecule center. BLA in cumulenic cases is much smaller than in polyynic cases, so, although not strictly, the separation to cumulenes and polyynes, approximately, holds. Vibrational analysis confirms that for N even all cumulenes with coplanar methylene end groups are stable, for N odd all cumulenes with perpendicular methylene end groups are stable, and the number of hydrogen atoms at the end groups is clearly seen in all cumulenic and polyynic cases. We calculate and discuss the Density Functional Theory (DFT) ground state energy of neutral molecules, the CDFT (Constrained DFT) “ground state energy” of molecules with a hole at one end group, energy spectra, density of states, energy gap, charge and dipole moment oscillations, mean over time probabilities to find the hole at each site, coherent transfer rates, and frequency content, in general. We also compare RT-TDDFT with TB results.
Across time and place, right hand preference has been the norm, but what is the precise prevalence of left- and right-handedness? Frequency of left-handedness has shaped and underpinned different fields of research, from cognitive neuroscience to human evolution, but reliable distributional estimates are still lacking. While hundreds of empirical studies have assessed handedness, a large-scale, comprehensive review of the prevalence of handedness and the factors which moderate it, is currently missing. Here, we report five meta-analyses on hand preference for different manual tasks and show that left-handedness prevalence lies between 9.34% (using the most stringent criterion of left-handedness) to 18.1% (using the most lenient criterion of non-right-handedness), with the best overall estimate being 10.6% (10.4% when excluding studies assessing elite athletes’ handedness). Handedness variability depends on (a) study characteristics, namely year of publication and ways to measure and classify handedness, and (b) participant characteristics, namely sex and ancestry. Our analysis identifies the role of moderators which require taking into account in future studies on handedness and hemispheric asymmetries. We argue that the same evolutionary mechanisms should apply across geographical regions to maintain the roughly 1:10 ratio, while cultural factors, such as pressure against left-hand use, moderate the magnitude of the prevalence of left-handedness. Although handedness appears as a straightforward trait, there is no universal agreement on how to assess it. Therefore, we urge researchers to fully report study and participant characteristics as well as the detailed procedure by which handedness was assessed and make raw data publicly available.
In autosomal dominant optic atrophy (ADOA), caused by mutations in the mitochondrial cristae biogenesis and fusion protein optic atrophy 1 (Opa1), retinal ganglion cell (RGC) dysfunction and visual loss occur by unknown mechanisms. Here, we show a role for autophagy in ADOA pathogenesis. In RGCs expressing mutated Opa1, active 5' AMP-activated protein kinase (AMPK) and its autophagy effector ULK1 accumulate at axonal hillocks. This AMPK activation triggers localized hillock autophagosome accumulation and mitophagy, ultimately resulting in reduced axonal mitochondrial content that is restored by genetic inhibition of AMPK and autophagy. In C. elegans, deletion of AMPK or of key autophagy and mitophagy genes normalizes the axonal mitochondrial content that is reduced upon mitochondrial dysfunction. In conditional, RGC specific Opa1-deficient mice, depletion of the essential autophagy gene Atg7 normalizes the excess autophagy and corrects the visual defects caused by Opa1 ablation. Thus, our data identify AMPK and autophagy as targetable components of ADOA pathogenesis.
Mediterranean mid-altitude sites are critical for the survival of plant species allowing for elevational vegetation shifts in response to high-amplitude climate variability. Pollen records from the southern Balkans have underlined the importance of the region in preserving plant diversity over at least the last half a million years. So far, there are no records of vegetation and climate dynamics from Balkan refugia with an Early Pleistocene age. Here we present a unique palynological archive from such a refugium, the Lake Ohrid basin, recording continuously floristic diversity and vegetation succession under obliquity-paced climate oscillations. Palynological data are complemented by biomarker, diatom, carbonate isotope and sedimentological data to identify the mechanisms controlling shifts in the aquatic and terrestrial ecosystems within the lake and its catchment. The study interval encompasses four complete glacial-interglacial cycles (1365–1165 ka; MIS 43–35). Within the first 100 kyr of lake ontogeny, lake size and depth increase before the lake system enters a new equilibrium state as observed in a distinct shift in biotic communities and sediment composition. Several relict tree genera such as Cedrus, Tsuga, Carya, and Pterocarya played an important role in ecological succession cycles, while total relict abundance accounts for up to half of the total arboreal vegetation. The most prominent biome during interglacials is cool mixed evergreen needleleaf and deciduous broadleaf forests, while cool evergreen needleleaf forests dominate within glacials. A rather forested landscape with a remarkable plant diversity provide unique insights into Early Pleistocene ecosystem resilience and vegetation dynamics.
Geoscience courses, such as geology and geomorphology, require not only classroom lessons and laboratory exercises, but field trips as well. However, the COVID-19 restrictions did not allow the prosecution of most planned field trips, and an alternative needed to be developed. The use of virtual field trips is one such alternative. Through them, one can not only visit any area of interest, but prepare themselves for any actual educational or exploratory field trip as well. Even though they do not, and should not, substitute any physical visit of a site of interest, they have many advantages when combined with a "live" field work, in comparison to a field trip for which no preparation has been made.Through this research, we compare the advantages and disadvantages of both virtual and real educational field trips based on the opinions of our students. We thus performed a virtual navigation on the island of Naxos, Cyclades (Aegean Sea, Greece) for a series of virtual field trips, which took place during webinars in the framework of Erasmus+ CIVIS. The virtual fieldtrip was also presented to the third-year students of the Faculty of Geology & Geo-environment, National and Kapodistrian University of Athens, in the framework of the obligatory course of Geomorphology. Upon completion, all participating students were asked to fill in a questionnaire in order to evaluate the contribution of virtual field trips to their education regarding geomorphology and state their opinion as to whether they can supplement and/or substitute actual field trips. Most of them stated that virtual field trips can aid, but not substitute the actual field work. Most students mentioned that they would attend another virtual field trip in the future, both as an alternative to classroom lessons and as a means of preparation for an actual field trip, but not in order not to attend the actual one.
This study examines request perspective, the least researched form of mitigation in requesting, while focusing on a type of request characterised by a strong preference for the speaker perspective in English and the hearer perspective in most other languages researched to date. It examines requests produced by 900 speakers from 9 different (inter)language groups: five groups of native speakers (English, German, Greek, Polish and Russian) and four groups of advanced learners of English as a foreign language (German, Greek, Polish and Russian L1s). While the learners used more conventionally indirect forms than the native speakers of the respective L1s, thus showing awareness of this English pragmatic norm, they retained a preference for the hearer perspective. These results suggest a reliance on pragmatic universals as an alternative explanation to pragmatic transfer, also illustrating the need to address less salient pragmatic features in English language teaching.
Context. EE Cep is one of few eclipsing binary systems with a dark, dusty disc around an invisible object similar to ɛ Aur. The system is characterised by grey and asymmetric eclipses every 5.6 yr that have significant variations in their photometric depth, ranging from ∼0.m5 to ∼2.m0. Aims: The main aim of the observational campaign of the EE Cep eclipse in 2014 was to test the model of disc precession. We expected that this eclipse would be one of the deepest with a depth of ∼2.m0. Methods: We collected multicoloured observations from almost 30 instruments located in Europe and North America. These photometric data cover 243 nights during and around the eclipse. We also analyzed low- and high-resolution spectra from several instruments. Results: The eclipse was shallow with a depth of 0.m71 in the V band. The multicoloured photometry illustrates small colour changes during the eclipse with a total amplitude of order ∼+0.m15 in the B - I colour index. We updated the linear ephemeris for this system by including new times of minima, measured from the three most recent eclipses at epochs E = 9, 10, and 11. We acquired new spectroscopic observations, covering orbital phases around the eclipse, which were not observed in the past and increased the data sample, filling some gaps and giving better insight into the evolution of the Hα and Na I spectral line profiles during the primary eclipse. Conclusions: The eclipse of EE Cep in 2014 was shallower than expected, measuring 0.m71 instead of ∼2.m0. This means that our model of disc precession needs revision. Tables A1-A29 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/639/A23
Blazar emission models based on magnetic reconnection succeed in reproducing many observed spectral and temporal features, including the short-duration luminous flaring events. Plasmoids, a self-consistent by-product of the tearing instability in the reconnection layer, can be the main source of blazar emission. Kinetic simulations of relativistic reconnection have demonstrated that plasmoids are characterized by rough energy equipartition between their radiating particles and magnetic fields. This is the main reason behind the apparent shortcoming of plasmoid-dominated emission models to explain the observed Compton ratios of BL Lac objects. Here, we demonstrate that the radiative interactions among plasmoids, which have been neglected so far, can assist in alleviating this contradiction. We show that photons emitted by large, slow-moving plasmoids can be a potentially important source of soft photons to be then upscattered, via inverse Compton, by small fast-moving, neighbouring plasmoids. This interplasmoid Compton scattering process can naturally occur throughout the reconnection layer, imprinting itself as an increase in the observed Compton ratios from those short and luminous plasmoid-powered flares within BL Lac sources, while maintaining energy equipartition between radiating particles and magnetic fields.
The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; ≳GeV) remains uncertain. The recent detection of sub-TeV emission from GRB 190114C by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) raises further debate on what powers the very high energy (VHE; ≳300 GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multiwavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB 190114C, we find that its afterglow emission in the Fermi-Large Area Telescope (LAT) band is synchrotron dominated. The late-time Fermi-LAT measurement (I.e. t ∼ 104 s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (I.e. ${\lesssim} 3\times 10^{-9}\, {\rm erg\, cm^{-3}}$ ), making the inverse Compton dominant in the sub-TeV energies.
Understanding the governing mechanisms of atmosphere–wave–ocean interactions is critical for unravelling the formation and evolution mechanisms of severe weather phenomena. This study aims at investigating the effects of atmosphere–wave–ocean feedbacks on a Mediterranean tropical-like cyclone (medicane), occurred on 27–30 September 2018 at the central-eastern Mediterranean Sea and characterized by severe environmental and socioeconomic impact. To unveil the interactions across the air–sea interface, the medicane was simulated by an integrated modelling system consisting of the Chemical Hydrological Atmospheric Ocean wave System (CHAOS), upgraded by embedding to it the Nucleus for European Modelling of the Ocean (NEMO) as ocean circulation component. Coupled simulations revealed that air–seaheat transfer and Ekman pumping, bringing sub-surface cold waters in upper ocean layers (upwelling), caused SST cooling (∼2–3 °C). SST cooling triggered a negative feedback loop procedure tending to balance between atmospheric and ocean processes. It also attenuated the cyclone and, subsequently, reduced the atmospheric energy embedded in ocean through the upper ocean vertical stratification weakening, thus, upper ocean vertical mixing, upwelling and SST cooling. The waves adjusted this feedback loop making the system more resistant in air–sea flux variations. Waves additionally weakened the cyclone not only due to the kinetic energy loss in the lower-atmosphere but also due to the enhancement of SST cooling which is attributed to the strengthening of Ekman pumping and vertical mixing, forced by wind stress increase. Nevertheless, waves partially balanced the air–wave–sea exchanges through the slight enthalpy flux gain under high wind conditions which is explained by considering the increase of enthalpy transfer coefficient in rougher sea areas.
Reduction of the uranium(III) metallocene [(η 5 ‐C 5 i Pr 5 ) 2 UI] ( 1 ) with potassium graphite produces the “second‐generation” uranocene [(η 5 ‐C 5 i Pr 5 ) 2 U] ( 2 ), which contains uranium in the formal divalent oxidation state. The geometry of 2 is that of a perfectly linear bis(cyclopentadienyl) sandwich complex, with the ground‐state valence electron configuration of uranium(II) revealed by electronic spectroscopy and density functional theory to be 5f 3 6d 1 . Appreciable covalent contributions to the metal‐ligand bonds were determined from a computational study of 2 , including participation from the uranium 5f and 6d orbitals. Whereas three unpaired electrons in 2 occupy orbitals with essentially pure 5f character, the fourth electron resides in an orbital defined by strong 7s‐6d mixing.
Israeli deterrence strategy, as an integral part of its strategic behavior tout azimut,can briefly be outlined in terms of threats (including existential ones), challenges,operational initiatives, doctrine, and the regional balance of power. All of thesecan be examined in light of Turkey’s ongoing adventurism. Israel’s strategic behaviorwill be analyzed in comparison to Greece’s security challenges and policieswith regard to Turkey, which engages in aggressive tactics in the Eastern Mediterranean and the Middle East at the expense of Greek and Israeli vital interests.
In this article we use pollen data from six sites in southern Greece to study long-term vegetation change in this region from 1000 BCE to 600 CE. Based on insights from environmental history, we interpret our estimated trends in the regional presence of cereal, olive and vine pollen as proxies for structural changes in agricultural production. We present evidence that there was a market economy in ancient Greece and a major trade expansion several centuries before the Roman conquest. Our results are consistent with auxiliary data on settlement dynamics, shipwrecks and ancient oil and wine presses.
Context. Deriving physical properties of trans-Neptunian objects is important for the understanding of our Solar System. This requires observational efforts and the development of techniques suitable for these studies. Aims: Our aim is to characterize the large trans-Neptunian object (TNO) 2002 TC302. Methods: Stellar occultations offer unique opportunities to determine key physical properties of TNOs. On 28 January 2018, 2002 TC302 occulted a mv ~ 15.3 star with designation 593-005847 in the UCAC4 stellar catalog, corresponding to Gaia source 130957813463146112. Twelve positive occultation chords were obtained from Italy, France, Slovenia, and Switzerland. Also, four negative detections were obtained near the north and south limbs. This represents the best observed stellar occultation by a TNO other than Pluto in terms of the number of chords published thus far. From the 12 chords, an accurate elliptical fit to the instantaneous projection of the body can be obtained that is compatible with the near misses. Results: The resulting ellipse has major and minor axes of 543 ± 18 km and 460 ± 11 km, respectively, with a position angle of 3 ± 1 degrees for the minor axis. This information, combined with rotational light curves obtained with the 1.5 m telescope at Sierra Nevada Observatory and the 1.23 m telescope at Calar Alto observatory, allows us to derive possible three-dimensional shapes and density estimations for the body based on hydrostatic equilibrium assumptions. The effective diameter in equivalent area is around 84 km smaller than the radiometrically derived diameter using thermal data from Herschel and Spitzer Space Telescopes. This might indicate the existence of an unresolved satellite of up to ~300 km in diameter, which is required to account for all the thermal flux, although the occultation and thermal diameters are compatible within their error bars given the considerable uncertainty of the thermal results. The existence of a potential satellite also appears to be consistent with other ground-based data presented here. From the effective occultation diameter combined with absolute magnitude measurements we derive a geometric albedo of 0.147 ± 0.005, which would be somewhat smaller if 2002 TC302 has a satellite. The best occultation light curves do not show any signs of ring features or any signatures of a global atmosphere. Tables A.1-A.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/639/A134
Sensory processing deficits and altered long-range connectivity putatively underlie Multisensory Integration (MSI) deficits in Autism Spectrum Disorder (ASD). The present study set out to investigate non-social MSI stimuli and their electrophysiological correlates in young neurotypical adolescents and adolescents with ASD. We report robust MSI effects at behavioural and electrophysiological levels. Both groups demonstrated normal behavioural MSI. However, at the neurophysiological level, the ASD group showed less MSI-related reduction of the visual P100 latency, greater MSI-related slowing of the auditory P200 and an overall temporally delayed and spatially constrained onset of MSI. Given the task design and patient sample, and the age of our participants, we argue that electro-cortical indices of MSI deficits in ASD: (a) can be detected in early-adolescent ASD, (b) occur at early stages of perceptual processing, (c) can possibly be compensated by later attentional processes, (d) thus leading to normal MSI at the behavioural level.
The present study focuses on the palynological investigation of a sediment core (S2P) recovered from Elefsis Bay, in the western part of Attica Peninsula (southern Greece). Until now, there is quite scarce knowledge about the vegetation history of southern Greece during Late Glacial and Holocene due to a deficiency of long high-resolution pollen records. The analyzed gravity core is a unique continuous and well-dated pollen archive, providing the opportunity for the reconstruction of the plant landscape succession in southern Greece since Late Glacial. In order evidence for the vegetation response to climate oscillations and human impact to be derived, detailed analyses were conducted throughout the sedimentary sequence, spanning the last 13,500 years. The pollen data suggest that temperate deciduous, open oak woodlands of Late Glacial were fully expanded during the onset of Holocene, without any pronounced setback due to climate oscillations as it has been previously indicated by pollen archives from northern Greece. Following this period, Middle Holocene is characterized by the establishment of complex vegetation patterns, partly as the result of human activities, which seem to be the dominant vegetation shaping factor during Late Holocene. Overall, our pollen record highlights the vegetation transition during Late Glacial and Holocene in southern Greece, while offering valuable insight into the plant landscape prior to the first signs of human impact on the environment.
The bedrock of Hymittos, Attic peninsula, Greece, exposes a pair of low-angle crustal-scale ductile-then-brittle detachment faults. The uppermost detachment fault separates sub-greenschist facies phyllite and marble of a Pelagonian Zone hanging wall, from greenschist facies metasedimentary schist, calc-schist, and marble correlated to the Cycladic Blueschist Unit. A second, structurally lower detachment fault subdivides the metamorphic rocks of the Cycladic blueschist unit footwall into middle and lower units. There is a marked step in metamorphic grade between the sub-greenschist facies uppermost package, and the middle-to-upper greenschist facies middle and lower packages. A suite of new white mica 40Ar/39Ar and zircon (U-Th)/He dates indicates accommodation of deformation along these faults occurred from the late Oligocene to the late Miocene with both faults active during the middle Miocene. The structures have clear top-S/SSW kinematics determined from flanking folds, sigmoids, shear bands, stair-stepping of strain shadows on porphyroclasts, and SCC' fabrics. The ductile-to-brittle deformation of the structures, morphology of the massif, and the increase in metamorphic grade suggest these low-angle structures are part of a major, crustal-scale extensional complex, located at the northwest end of the West Cycladic Detachment System, that accommodated Miocene bivergent exhumation of Attic-Cycladic metamorphic core complexes in the central Aegean. Taken together, the above data suggest that multiple coeval detachment branches may form in areas with high strain gradients to accommodate the mechanically necessary termination of Cycladic-style detachment systems.
The article examines the critique of the French congregational schools of Smyrna in the late 19th century, carried out by Demetrius Georgiades, a Smyrniot trade manager and, at the same time, a French-speaking journalist and author. Through the study of his journals and books, published in Paris at the dawn of the new century, we have been able to trace the origins of the skepticism that preoccupies the public opinion inside and outside of France, in connection with the confessional character of schools. Under the pretext of defending the French interests in these remote regions, Georgiades examines the role of congregational schools in the penetration of French commerce and the expansion of French language and civilization in Asia Minor. The questions of functioning and financing of these schools do not escape Georgiadès’s caustic pen either. To strengthen his arguments, Georgiades compares the education provided by French schools to that of Smyrna’s other foreign communities.
AIMS: Levosimendan (LEVO) a clinically-used inodilator, exerts multifaceted cardioprotective effects. Case-studies indicate protection against doxorubicin (DXR)-induced cardiotoxicity, but this effect remains obscure. We investigated the effect and mechanism of different regimens of levosimendan on sub-chronic and chronic doxorubicin cardiotoxicity. METHODS AND RESULTS: Based on preliminary in vivo experiments, rats serving as a sub-chronic model of doxorubicin-cardiotoxicity and were divided into: Control (N/S-0.9%), DXR (18 mg/kg-cumulative), DXR+LEVO (LEVO, 24 mug/kg-cumulative), and DXR+LEVO (acute) (LEVO, 24 mug/kg-bolus) for 14 days. Protein kinase-B (Akt), endothelial nitric oxide synthase (eNOS), and protein kinase-A and G (PKA/PKG) pathways emerged as contributors to the cardioprotection, converging onto phospholamban (PLN). To verify the contribution of PLN, phospholamban knockout (PLN-/-) mice were assigned to PLN-/-/Control (N/S-0.9%), PLN-/-/DXR (18 mg/kg), and PLN-/-/DXR+LEVO (ac) for 14 days. Furthermore, female breast cancer-bearing (BC) mice were divided into: Control (normal saline 0.9%, N/S 0.9%), DXR (18 mg/kg), LEVO, and DXR+LEVO (LEVO, 24 mug/kg-bolus) for 28 days. Echocardiography was performed in all protocols. To elucidate levosimendan's cardioprotective mechanism, primary cardiomyocytes were treated with doxorubicin or/and levosimendan and with N omega-nitro-L-arginine methyl ester (L-NAME), DT-2, and H-89 (eNOS, PKG, and PKA inhibitors, respectively); cardiomyocyte-toxicity was assessed. Single bolus administration of levosimendan abrogated DXR-induced cardiotoxicity and activated Akt/eNOS and cAMP-PKA/cGMP-PKG/PLN pathways but failed to exert cardioprotection in PLN-/- mice. Levosimendan's cardioprotection was also evident in the BC model. Finally, in vitro PKA inhibition abrogated levosimendan-mediated cardioprotection, indicating that its cardioprotection is cAMP-PKA dependent, while levosimendan preponderated over milrinone and dobutamine, by ameliorating calcium overload. CONCLUSION: Single dose levosimendan prevented doxorubicin cardiotoxicity through a cAMP-PKA-PLN pathway, highlighting the role of inotropy in doxorubicin cardiotoxicity.
OBJECTIVE: The objective of this study was to translate the Menopause-specific Quality of Life (MENQOL) questionnaire in Greek and validate it for usage in the Greek population both in written and electronic form. METHODS: The original English questionnaire MENQOL with 1-month recall period was translated by our team. According to instructions by Mapi Research Trust, the questionnaire was forward and back-translated, followed by patient testing and proofreading. Then it was transcripted electronically. Validation was performed with the following tests: internal consistency (reliability), stability (test-retest reliability) with Cronbach's alpha correlations, independent and paired t tests, and Pearson's correlation coefficients. RESULTS: A total of 105 women, the majority recently menopausal, participated in the study. Internal consistency using the Cronbach's alpha showed high reliability ranging between 0.833 (physical domain) and 0.896 (vasomotor domain) for the written, and 0.720 (physical domain) and 0.868 (vasomotor domain) for the online form. Test-retest reliability was also high for both forms. The sexual domain of MENQOL had the higher mean, indicating the highest impact on quality of life (3.80 ± 2.35). CONCLUSIONS: The Greek version of MENQOL is a reliable instrument for evaluating menopausal women. Availability of an online form will allow wider dissemination of the questionnaire. Further use of the questionnaire in Greece may lead to better understanding of the bothersome symptoms of menopause; a prerequisite to develop intervention studies for amelioration of quality of life.
This article presents results from a needs analysis survey conducted in the first year of a European-funded project entitled ‘Teachers’ Assessment Literacy Enhancement (TALE)’. The survey questionnaire used asked 1788 learners of English in Cyprus, Germany, Greece and Hungary about their experiences of assessment; which of these they considered conducive to learning and the role feedback played as an instrument of formative assessment. Further questionnaire data from their 658 teachers were included in the data analysis. The results showed that practices differed across contexts. Overall, both learners and teachers reported a wide range of skills and areas to be assessed in the EFL classroom with writing, followed by speaking, being assessed the most. Based on the perceptions reported by the learners, the assessment types used revealed rather traditional approaches with frequent use of e.g. discrete-point tests with closed answers, extended writing and translation. The learners appeared to regard these types of assessment to be supportive of their learning. Feedback given was mostly restricted to marks and brief comments. The perceptions on feedback practices varied among teachers and their learners. Results of the needs analysis were taken as the basis of the online course design for enhancing teachers’ language assessment literacy.
Liver fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) proteins and enzymes, especially fibrillary collagens, and represents a major cause of morbidity and mortality worldwide. Lysyl oxidases (LOXs) drive covalent crosslinking of collagen fibers, thereby promoting stabilization and accumulation of liver fibrosis while limiting its resolution. Here we show in a carbon tetrachloride (CCl4)-induced liver fibrosis murine model that treatment with a novel anti-lysyl oxidase like 2 (LOXL2) neutralizing antibody, which targets extracellular LOXL2, significantly improves fibrosis resolution. LOXL2 inhibition following the onset of fibrosis accelerated and augmented collagen degradation. This was accompanied by increased localization of reparative monocyte-derived macrophages (MoMFs) in the proximity of fibrotic fibers and their representation in the liver. These cells secreted collagenolytic matrix metalloproteinases (MMPs) and, in particular, the membrane-bound MT1-MMP (MMP-14) collagenase. Inducible and selective ablation of infiltrating MoMFs negated the increased "on-fiber" accumulation of MMP-14-expressing MoMFs and the accelerated collagenolytic activity observed in the anti-LOXL2-treated mice. Many studies of liver fibrosis focus on preventing the progression of the fibrotic process. In contrast, the therapeutic mechanism of LOXL2 inhibition presented herein aims at reversing existing fibrosis and facilitating endogenous liver regeneration by paving the way for collagenolytic macrophages.
In this work, we explore the applicability of standard theoretical models of accretion to the observed properties of M51 ULX-7. The spin-up rate and observed X-ray luminosity are evidence of a neutron star with a surface magnetic field of 2-7 × 1013 G, rotating near equilibrium. Analysis of the X-ray light curve of the system (Swift/XRT data) reveals the presence of a ∼39 d superorbital period. We argue that the superorbital periodicity is due to disc precession, and that material is accreted on to the neutron star at a constant rate throughout it. Moreover, by attributing this modulation to the free precession of the neutron star we estimate a surface magnetic field strength of 3-4 × 1013 G. The agreement of these two independent estimates provide strong constraints on the surface polar magnetic field strength of the NS.
This paper studies on “Early Warning Systems” (EWS) by investigating possible contagion risks, based on structured financial networks. Early warning indicators improve standard crisis prediction models performance. Using network analysis and machine learning algorithms we find evidence of contagion risk on the dates where we observe significant increase in correlations and centralities. The effectiveness of machine learning reached 98.8%, making the predictions extremely accurate. The model provides significant information to policymakers and investors about employing the financial network as a useful tool to improve portfolio selection by targeting assets based on centrality.
Lekkas E, Mavroulis S, Carydis P, Skourtsos E, Kaviris G, Paschos P, Ganas A, Kazantzidou-Firtinidou D, Par-charidis I, Gatsios T. The March 21, 2020, Mw 5.7 Epirus (Greece) Earthquake. Newsletter of the Postgraduate Studies Program “Environmental Disasters & Crises Management Strategies” of the National and Kapodistrian University of Athens. Issue. 2020;(17).
The sarcomere is the basic unit of the myofibrils, which mediate skeletal and cardiac Muscle contraction. Two transverse structures, the Z-disc and the M-band, anchor the thin (actin and associated proteins) and thick (myosin and associated proteins) filaments to the elastic filament system composed of titin. A plethora of proteins are known to be integral or associated proteins of the Z-disc and its structural and signalling role in muscle is better understood, while the molecular constituents of the M-band and its function are less well defined. Evidence discussed here suggests that the M-band is important for managing force imbalances during active muscle contraction. Its molecular composition is fine-tuned, especially as far as the structural linkers encoded by members of the myomesin family are concerned and depends on the specific mechanical characteristics of each particular muscle fibre type. Muscle activity signals from the M-band to the nucleus and affects transcription of sarcomeric genes, especially via serum response factor (SRF). Due to its important role as shock absorber in contracting muscle, the M-band is also more and more recognised as a contributor to muscle disease.
Chronic pain manifests in multiple disorders and is highly debilitating. While its pathophysiology is not fully understood, the involvement of the mesocorticolimbic monoaminergic systems have been shown to play a critical role in chronic pain emergence and/or maintenance. In this study, we analyzed the levels of monoamines dopamine (DA), noradrenaline (NA) and serotonin (5-HT) in mesocorticolimbic areas - medial prefrontal cortex, orbitofrontal cortex, striatum, nucleus accumbens and amygdala - 1 month after a neuropathic lesion, Spared Nerve Injury (SNI). In SNI animals, were observed a marginal decrease of DA and 5-HT in the striatum and a rightward shift in the levels of NA in the nucleus accumbens. While mesocorticolimbic monoamines might be relevant for chronic pain pathophysiology its content appears to be relatively unaffected in our experimental conditions.
Aging research aims at developing interventions that delay normal aging processes and some related pathologies. Recently, many compounds and extracts from natural products have been shown to delay aging and/or extend lifespan. Marine sponges and their associated microorganisms have been found to produce a wide variety of bioactive secondary metabolites; however, those from the Southwest of the Indian Ocean are much less studied, especially regarding anti-aging activities. In this study, the microbial diversity of the marine sponge Scopalina hapalia was investigated by metagenomic analysis. Twenty-six bacterial and two archaeal phyla were recovered from the sponge, of which the Proteobacteria phylum was the most abundant. In addition, thirty isolates from S. hapalia were selected and cultivated for identification and secondary metabolites production. The selected isolates were affiliated to the genera Bacillus, Micromonospora, Rhodoccocus, Salinispora, Aspergillus, Chaetomium, Nigrospora and unidentified genera related to the family Thermoactinomycetaceae. Crude extracts from selected microbial cultures were found to be active against seven targets i.e., elastase, tyrosinase, catalase, sirtuin 1, Cyclin-dependent kinase 7 (CDK7), Fyn kinase and proteasome. These results highlight the potential of microorganisms associated with a marine sponge from Mayotte to produce anti-aging compounds. Future work will focus on the isolation and the characterization of bioactive molecules.
Ovarian cancer (OC) remains a leading cause of gynecological cancer-related death worldwide, characterized by poor 5-year survival. Molecular markers could serve as crucial tools of personalized prognosis and therapy. Herein, we present miR-181a as novel predictor of OC prognosis, using five independent OC cohorts. In particular, a screening (n = 81) and an institutionally independent validation (n = 100, OVCAD multicenter study) serous OC (SOC) cohorts were analyzed. Bagnoli et al (2016) OC179 (n = 124) to OC133 (n = 100) and TCGA (n = 489) served as external validation cohorts. Patients' survival and disease progression were assessed as clinical endpoint events. Bootstrap analysis was performed for internal validation and decision curve analysis was utilized to evaluate clinical benefit. miR-181a overexpression was unveiled as powerful and independent molecular predictor of patients' poor survival and higher risk for disease progression after debulking surgery and platinum-based chemotherapy. Analysis of the OVCAD institutionally independent cohort, as well as of Bagnoli et al. and TCGA external cohorts further confirmed the unfavorable prognostic nature of miR-181a overexpression in SOC. Strikingly, multivariate prognostic models incorporating miR-181a with established disease markers clearly improved patients' risk-stratification and offered superior clinical benefit in OC prognostication. Conclusively, miR-181a evaluation could augment prognostic accuracy and support precision medicine decisions in OC.
Ovarian cancer (OC) accounts for the most gynecological cancer-related deaths in developed countries. Unfortunately, the lack of both evident early symptoms and effective asymptomatic population screening results in late diagnosis and inevitably poor prognosis. Hence, it is urgent to identify novel molecular markers to support personalized prognosis. In the present study, we have analyzed the clinical significance of miR-203 in OC using two institutionally independent cohorts. miR-203 levels were quantified in a screening (n = 125) and a validation cohort (n = 100, OVCAD multicenter study). Survival analysis was performed using progression and death as clinical endpoint events. Internal validation was conducted by bootstrap analysis, and decision curve analysis was used to evaluate the clinical benefit. Increased miR-203 levels in OC patients were correlated with unfavorable prognosis and higher risk for disease progression, independently of FIGO stage, tumor grade, residual tumor after surgery, chemotherapy response and age. The analysis of the institutionally independent validation cohort (OVCAD study) clearly confirmed the shorter survival outcome of the patients overexpressing miR-203. Additionally, integration of miR-203 levels with the established disease prognostic markers led to a superior stratification of OC patients that can ameliorate prognosis and benefit patient clinical management. In this regard, miR-203 expression constitutes a novel independent molecular marker to improve patients' prognosis in OC.
Neurodegenerative diseases are strongly age-related and currently cannot be cured, with a surge of patient numbers in the coming decades in view of the emerging worldwide ageing population, bringing healthcare and socioeconomic challenges. Effective therapies are urgently needed, and are dependent on new aetiological mechanisms. In neurons, efficient clearance of damaged mitochondria, through the highly evolutionary conserved cellular process termed mitophagy, plays a fundamental role in mitochondrial and metabolic homeostasis, energy supply, neuronal survival, and health. Conversely, defective mitophagy leads to accumulation of damaged mitochondria and cellular dysfunction, contributing to ageing and age-predisposed neurodegeneration. Here, we discuss the contribution of defective mitophagy in these diseases, and underlying molecular mechanisms, and highlight novel therapeutics based on new discovered mitophagy-inducing strategies.
Battling human neurodegenerative pathologies and managing their pervasive socioeconomic impact is becoming a global priority. Notwithstanding their detrimental effects on the human life quality and the healthcare system, the majority of human neurodegenerative disorders still remain incurable and non-preventable. Therefore, the development of novel therapeutic interventions against such maladies is becoming a pressing urgency. Age-associated deterioration of neuronal circuits and function is evolutionarily conserved in organisms as diverse as the lowly worm Caenorhabditis elegans and humans, signifying similarities in the underlying cellular and molecular mechanisms. C. elegans is a highly malleable genetic model, which offers a well-characterized nervous system, body transparency and a diverse repertoire of genetic and imaging techniques to assess neuronal activity and quality control during ageing. Here, we introduce and describe methodologies utilizing some versatile nematode models, including hyperactivated ion channel-induced necrosis (e.g., deg-3(d) and mec-4(d)) and protein aggregate (e.g., alpha-syunclein and poly-glutamate)-induced neurotoxicity, to monitor and dissect the cellular and molecular underpinnings of age-related neuronal breakdown. A combination of these animal neurodegeneration models, together with genetic and pharmacological screens for cell death modulators will lead to an unprecedented understanding of age-related breakdown of neuronal function and will provide critical insights with broad relevance to human health and quality of life.
BACKGROUND.: The aim of the current study was to explore the changing interrelationships among clinical variables through the stages of schizophrenia in order to assemble a comprehensive and meaningful disease model. METHODS.: Twenty-nine centers from 25 countries participated and included 2358 patients aged 37.21 ± 11.87 years with schizophrenia. Multiple linear regression analysis and visual inspection of plots were performed. RESULTS.: The results suggest that with progression stages, there are changing correlations among Positive and Negative Syndrome Scale factors at each stage and each factor correlates with all the others in that particular stage, in which this factor is dominant. This internal structure further supports the validity of an already proposed four stages model, with positive symptoms dominating the first stage, excitement/hostility the second, depression the third, and neurocognitive decline the last stage. CONCLUSIONS.: The current study investigated the mental organization and functioning in patients with schizophrenia in relation to different stages of illness progression. It revealed two distinct "cores" of schizophrenia, the "Positive" and the "Negative," while neurocognitive decline escalates during the later stages. Future research should focus on the therapeutic implications of such a model. Stopping the progress of the illness could demand to stop the succession of stages. This could be achieved not only by both halting the triggering effect of positive and negative symptoms, but also by stopping the sensitization effect on the neural pathways responsible for the development of hostility, excitement, anxiety, and depression as well as the deleterious effect on neural networks responsible for neurocognition.
This study quantifies the effects of the Fed’s quantitative easing (QE) and tapering programs’ announcements on professionals’ consensus forecasts of U.S. macroeconomic and financial variables at different forecast horizons. The results of a vector autoregression (VAR) analysis show that the first QE (QE1) program is more effective in terms of significantly affecting the variability of near and medium term forecasts on GDP, inflation and short-term interest rates. This is not the case for these variables of long forecast horizons across all QE/tapering announcements, the forecasts of U.S. currency and long-term rates present significant short-lived responses, while the tapering displays a dominant effect on the volatility of long-term rates across long-term forecast horizons. A dynamic correlation analysis among different horizon forecasts also reveals that the Fed successfully anchor inflation and real economic growth expectations during the expansionary policy (QE) periods. Additional findings show the anchoring of the expectations across different horizons on short-term rates, as opposed to long-term rates, during the QE1 program. During the contractionary (tapering) period, the decrease in the correlations among different horizons for the short-term rates’ forecasts is a sign that the Fed increases the range of possible outcomes and highlights a signal of a monetary policy change.
BACKGROUND: The spread of SARS-CoV-2 generated an unprecedented global public health crisis. Soon after Asia, Europe was seriously affected. Many countries, including Romania, adopted lockdown measures to limit the outbreak. AIM: We performed a molecular epidemiology analysis of SARS-CoV-2 viral strains circulating in Romania during the first two months of the epidemic in order to detect mutation profiles and phylogenetic relatedness. METHODS: Respiratory samples were directly used for shotgun sequencing. RESULTS: All Romanian sequences belonged to lineage B, with a different subtype distribution between northern and southern regions (subtype B.1.5 and B.1.1). Phylogenetic analysis suggested that the Romanian epidemic started with multiple introduction events from other European countries followed by local transmission. Phylogenetic links between northern Romania and Spain, Austria, Scotland and Russia were observed, as well as between southern Romania and Switzerland, Italy, France and Turkey. One viral strain presented a previously unreported mutation in the Nsp2 gene, namely K489E. Epidemiologically-defined clusters displayed specific mutations, suggesting molecular signatures for strains coming from areas that were isolated during the lockdown. CONCLUSIONS: Romanian epidemic was initiated by multiple introductions from European countries followed by local transmissions. Different subtype distribution between northern and southern Romania was observed after two months of the pandemic.
Asynchronous movement of the carotid atheromatous plaque from B-mode ultrasound has been previously reported, and associated with higher risk of stroke, but not quantitatively estimated. Based on the hypothesis that asynchronous plaque motion is associated with vulnerable plaque, in this study, synchronisation patterns of different tissue areas were estimated using cross-correlations of displacement waveforms. In 135 plaques (77 subjects), plaque radial deformation was synchronised by approximately 50% with the arterial diameter, and the mean phase shift was 0.4 s. Within the plaque, the mean phase shifts between the displacements of the top and bottom surfaces were 0.2 s and 0.3 s, in the radial and longitudinal directions, respectively, and the synchronisation about 80% in both directions. Classification of phase-shift-based features using Random Forests yielded Area-Under-the-Curve scores of 0.81, 0.79, 0.89 and 0.90 for echogenicity, symptomaticity, stenosis degree and plaque risk, respectively. Statistical analysis showed that echolucent, high-stenosis and high-risk plaques exhibited higher phase shifts between the radial displacements of their top and bottom surfaces. These findings are useful in the study of plaque kinematics.
The IceCube report of a ∼ 3.5σ excess of 13 ± 5 neutrino events in the direction of the blazar TXS 0506+056 in 2014-2015 and the 2017 detection of a high-energy neutrino event, IceCube-170922A, during a gamma-ray flare from the same blazar, have revived the interest in scenarios for neutrino production in blazars. We perform comprehensive analyses on the long-term electromagnetic emission of TXS 0506+056 using optical, X-ray, and gamma-ray data from the All-Sky Automated Survey for Supernovae, the Neil Gehrels Swift Observatory, Monitor of All-sky X-ray Image, and the Fermi Large Area Telescope. We also perform numerical modeling of the spectral energy distributions (SEDs) in four epochs prior to 2017 with contemporaneous gamma-ray and lower-energy (optical and/or X-ray) data. We find that the multi-epoch SEDs are consistent with a hybrid leptonic scenario, where the gamma-rays are produced in the blazar zone via external inverse Compton scattering of accelerated electrons, and high-energy neutrinos are produced via the photomeson production process of co-accelerated protons. The multi-epoch SEDs can be satisfactorily explained with the same jet parameters and variable external photon density and electron luminosity. Using the maximal neutrino flux derived for each epoch, we put an upper limit of ∼0.4-2 on the muon neutrino number in 10 years of IceCube observations. Our results are consistent with the IceCube-170922A detection, which can be explained as an upper fluctuation from the average neutrino rate expected from the source, but in strong tension with the 2014-2015 neutrino flare.
The IceCube report of a ∼ 3.5σ excess of 13 ± 5 neutrino events in the direction of the blazar TXS 0506+056 in 2014-2015 and the 2017 detection of a high-energy neutrino event, IceCube-170922A, during a gamma-ray flare from the same blazar, have revived the interest in scenarios for neutrino production in blazars. We perform comprehensive analyses on the long-term electromagnetic emission of TXS 0506+056 using optical, X-ray, and gamma-ray data from the All-Sky Automated Survey for Supernovae, the Neil Gehrels Swift Observatory, Monitor of All-sky X-ray Image, and the Fermi Large Area Telescope. We also perform numerical modeling of the spectral energy distributions (SEDs) in four epochs prior to 2017 with contemporaneous gamma-ray and lower-energy (optical and/or X-ray) data. We find that the multi-epoch SEDs are consistent with a hybrid leptonic scenario, where the gamma-rays are produced in the blazar zone via external inverse Compton scattering of accelerated electrons, and high-energy neutrinos are produced via the photomeson production process of co-accelerated protons. The multi-epoch SEDs can be satisfactorily explained with the same jet parameters and variable external photon density and electron luminosity. Using the maximal neutrino flux derived for each epoch, we put an upper limit of ∼0.4-2 on the muon neutrino number in 10 years of IceCube observations. Our results are consistent with the IceCube-170922A detection, which can be explained as an upper fluctuation from the average neutrino rate expected from the source, but in strong tension with the 2014-2015 neutrino flare.
A thorough theoretical study of the optical properties of periodic Si nanosphere arrays is undertaken, placing a particular emphasis on the synergy between multipolar, electric and magnetic, Mie resonances, which occur in high-refractive-index nanoparticles and can lead to a rich variety of phenomena ranging from perfect reflection to controlled diffraction. Systematic calculations using the layer-multiple-scattering method, which we properly extended to describe periodic arrays with many different scatterers per unit cell, in conjunction with finite-element simulations are presented. It is shown that rectangular arrays of pairs of Si nanospheres can efficiently diffract light in reflection or transmission mode at large angles as well as split light with minimum backreflection by properly adjusting the geometry of the structure. Our rigorous full-electrodynamic calculations highlight the importance of higher-order multipoles, which are not taken into account in the commonly employed dipole approximation, in the description of these effects.
The paleoenvironmental evolution of Lake Ismarida in Thrace (Northern Greece) is revealed by the combined lithological, micropaleontological (benthic foraminifera, pollen and NPPS), molluscan analyses, magnetic susceptibility measurement and radiocarbon dating of a 5.8-m long sediment core. The mid Holocene evolution of the lake area is evidenced by the documentation of four sedimentary Units in the core ISMR-2, corresponding to four distinct evolutionary stages: (1) during ∼5500-3500 cal yr BP the lake area was a shallow marine environment characterized by an Ammonia beccarii, small rotaliids, miliolids, Bittium reticulatum and Veneridae spp. assemblage, marine dinoflagellate cysts, and low magnetic susceptibility values; (2) during ∼3500-3000 cal BP the environment is gradually tending to more isolated conditions forming an open lagoon, characterized by marine and euryhaline fauna and low magnetic susceptibility values; (3) during 3000 cal yr BP, the open lagoon presented a transition to an oligohaline inner lagoon, characterized by an Ammonia tepida, Haynesina germanica, Aubignyna perlucida, Pirenella conica, Cerastoderma glaucum and Abra spp. assemblage, sedges and aquatic vegetation. This restricted, entirely isolated from the sea inner lagoon could be definitely used as the landmark of the Lake Ismaris from Heorodotus, while describing the march of Xerxes through Thrace in 480 B.C.; (4) since ∼2000 cal yr BP to the present, the Lake Ismarida is formed, characterized by fresh-water indicators and aquatic pollen, Pseudoschizaea and high magnetic susceptibility values. Finally, the progradation of the Filiouris River deltaic deposits resulted to a 4 km wide deltaic plain between Lake Ismarida and the nowadays coastline. Pollen assemblages record the dominance of a rather rich deciduous forest in the area with traces of human presence in the lower part of the sequence, whereas the opening of the plant landscape under the increasing human pressure is evidenced after ∼ 3000 cal yr BP. Finally, an open vegetation pattern, contemporaneous with the retreat of forest vegetation, is evidenced in the area already before 2000 cal yr BP.
Rudigier M, Walker PM, Canavan RL, Podolyák Z, Regan PH, Söderström P-A, Lebois M, Wilson JN, Jovancevic N, Blazhev A, et al.Multi-quasiparticle sub-nanosecond isomers in 178W. Physics Letters B. 2020;801:135140.
Our aim was to investigate the dispersal patterns and parameters associated with local molecular transmission clusters (MTCs) of subtypes A1 and B in Greece (predominant HIV-1 subtypes). The analysis focused on 1751 (28.4%) and 2575 (41.8%) sequences of subtype A1 and B, respectively. Identification of MTCs was based on phylogenetic analysis. The analyses identified 38 MTCs including 2-1518 subtype A1 sequences and 168 MTCs in the range of 2-218 subtype B sequences. The proportion of sequences within MTCs was 93.8% (1642/1751) and 77.0% (1982/2575) for subtype A1 and B, respectively. Transmissions within MTCs for subtype A1 were associated with risk group (Men having Sex with Men vs. heterosexuals, OR = 5.34, p < 0.001) and Greek origin (Greek vs. non-Greek origin, OR = 6.05, p < 0.001) and for subtype B, they were associated with Greek origin (Greek vs. non-Greek origin, OR = 1.57, p = 0.019), younger age (OR = 0.96, p < 0.001), and more recent sampling (time period: 2011-2015 vs. 1999-2005, OR = 3.83, p < 0.001). Our findings about the patterns of across and within country dispersal as well as the parameters associated with transmission within MTCs provide a framework for the application of the study of molecular clusters for HIV prevention.
Guided by the self-determination theory, this weekly diary study tested a process model in which week-to-week mother-reported interparental conflict and perceived partner responsiveness were associated with maternal autonomy support by means of maternal psychological need satisfaction. During six consecutive weeks, 258 mothers (Mage = 41.71 years) and their 157 adolescents (51.4% females, Mage = 14.92 years) from Turkey provided weekly reports of the study variables via an online survey. Multilevel analyses showed that maternal need satisfaction was predicted by lower levels of interparental conflict and greater levels of perceived partner responsiveness. Maternal need satisfaction, in turn, was positively associated with maternal and adolescent reports of maternal autonomy support. Further, these week-to-week associations were partly moderated by maternal perfectionism. The results underscore the dynamic nature of the intra-family relationships, the important role of particular conditions in which mothers may become more autonomy supportive, and the necessity to consider mother’s personal characteristics while examining these dynamics.
Maintenance of neuronal homeostasis is a challenging task, due to unique cellular organization and bioenergetic demands of post-mitotic neurons. It is increasingly appreciated that impairment of mitochondrial homeostasis represents an early sign of neuronal dysfunction that is common in both age-related neurodegenerative as well as in neurodevelopmental disorders. Mitochondrial selective autophagy, known as mitophagy, regulates mitochondrial number ensuring cellular adaptation in response to several intracellular and environmental stimuli. Mounting evidence underlines that deregulation of mitophagy levels has an instructive role in the process of neurodegeneration. Although mitophagy induction mediates the elimination of damaged mitochondria and confers neuroprotection, uncontrolled runaway mitophagy could reduce mitochondrial content overstressing the remaining organelles and eventually triggering neuronal cell death. Unveiling the molecular mechanisms of neuronal mitophagy and its intricate role in neuronal survival and cell death, will assist in the development of novel mitophagy modulators to promote cellular and organismal homeostasis in health and disease.
The IceCube collaboration reported an ∼3.5σ excess of 13 ± 5 neutrino events in the direction of the blazar TXS 0506+056 during an ∼6 month period in 2014-2015, as well as the (∼3σ) detection of a high-energy muon neutrino during an electromagnetic flare in 2017. We explore the possibility that the 2014-2015 neutrino excess and the 2017 multimessenger flare are both explained in a common physical framework that relies on the emergence of a relativistic neutral beam in the blazar jet due to interactions of accelerated cosmic rays (CRs) with photons. We demonstrate that the neutral beam model provides an explanation for the 2014-2015 neutrino excess without violating X-ray and γ-ray constraints and yields results consistent with the detection of one high-energy neutrino during the 2017 flare. If both neutrino associations with TXS 05065+056 are real, our model requires that (I) the composition of accelerated CRs is light, with a ratio of helium nuclei to protons ≳5; (II) a luminous external photon field (∼1046 erg s-1) variable (on yearlong timescales) is present; and (III) the CR injection luminosity, as well as the properties of the dissipation region (I.e., Lorentz factor, magnetic field, and size), vary on yearlong timescales.
Economou A. New coronavirus outbreak. Current Pharmaceutical AnalysisCurrent Pharmaceutical Analysis. 2020;16:335-336.
A novel finite-time convergent zeroing neural network (ZNN) based on varying gain parameter for solving time-varying (TV) problems is presented. The model is based on the improvement and generalization of the finite-time ZNN (FTZNN) dynamics by means of the varying-parameter ZNN (VPZNN) dynamics, and termed as VPFTZNN. More precisely, the proposed model replaces fixed and large values of the scaling parameter by an appropriate time-dependent gain parameter, which leads to a faster and bounded convergence of the error function in comparison to previous ZNN methods. The convergence properties of the proposed VPFTZNN dynamical evolution in its generic form is verified. Particularly, VPFTZNN for solving linear matrix equations and for computing generalized inverses are investigated theoretically and numerically. Moreover, the proposed design is applicable in solving the TV matrix inversion problem, solving the Lyapunov and Sylvester equation as well as in approximating the matrix square root. Theoretical analysis as well as simulation results validate the effectiveness of the introduced dynamical evolution. The main advantages of the proposed VPFTZNN dynamics are their generality and faster finite-time convergence with respect to FTZNN models.
The treatment of AL amyloidosis aims to eradicate the plasma cell clone and eliminate toxic free light chain production. Only in a minority of patients the plasma cell clone is completely eradicated; residual light chain production may still exist while clonal relapse may occur. We used sensitive next-generation flow cytometry (NGF) to detect minimal residual disease (MRD) in AL amyloidosis patients at complete haematologic response. MRD evaluation was feasible in 51 of 52 (98{%}) tested patients and at a median sensitivity of 2.3 × 10−6 MRD was undetectable in 23 (45{%}). An organ response occurred in 86{%} of MRDneg vs 77{%} in MRDpos; renal response in 15/17(88{%}) of MRDneg vs in 14/16(87.5{%}) of MRDpos and cardiac response in 10/10(100{%}) of MRDneg vs 11/15(73{%}) of MRDpos patients. After a median follow-up of 24 months post MRD testing, no MRDneg patient had a haematologic relapse vs 6/28(21{%}) MRDpos (p =.029). Pooling haematologic and organ progressions, 9 (32{%}) MRDpos patients had disease progression vs only 1 (4{%}) MRDneg patient (p =.026). In conclusion, MRD detection using NGF has profound clinical implications, so that AL patients with undetectable MRD have a very high probability of organ response and a very low probability of haematologic relapse.
Following the detection of recent X-ray activity from the Be X-ray binary pulsar 1A 0535+262 on 2020 November 6 (ATel #14157), the Neutron Star Interior Composition Explorer (NICER) has observed the system at multiple epochs.
Following the SRG/eROSITA discovery of a strong outburst from the LMC Be/X-ray binary RX J0529.8-6556 (Haberl et al., ATEL #13828) we triggered NICER ToO observations to search for pulsations and obtain high-quality spectra.
Trans-crocin 4 (TC4) is an important carotenoid constituent of saffron showing potential activity against Alzheimer's Disease (AD) due to its antioxidant and antiamyloidogenic properties. Metabolomics is an emerging scientific field that enhances biomarker discovery and reveals underlying biochemical mechanisms aiming towards the early subclinical diagnosis of diseases. To date, there are no reports on the changes induced to mice plasma metabolome after TC4 administration. We report a novel untargeted UHPLC-ESI HRMS metabolomics strategy to determine the alteration of the metabolic fingerprint following i.p. administration of TC4 in male and female mice. Blood samples from fiftysix mice treated with TC4 as well as from control animals were analyzed with UHPLC-ESI HRMS. Statistical evaluation of the results was achieved by multivariate analysis (MVA), i.e., principal component analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA) in order to discover the variables that contributed to the discrimination between treated and untreated groups which were identified by online database searching (e.g., Metlin, HMDB, KEGG) aided by chemometric processing, e.g., covariance searching etc. Due to the high variability imposed by various factors, e.g., sex of the animals participating in the study, administration dose and time-points of sacrifice, multilevel sparse PLS-DA analysis, e.g., splitting variation to each individual component, has been employed as a more efficient approach for such designs. This methodology allowed the identification of the time sequence of metabolome changes due to the administration of TC4, whereas a sex-related effect on the metabolome is indicated, denoting that the administration in both sexes is indispensable in order to acquire safe conclusions as reliable metabolome pictures. The results demonstrated a number of annotated metabolites playing a potential role in neuroprotection while they are closely related to AD. Moreover, five additional annotated metabolites were involved in the steroid biosynthesis pathway while two of them may be considered as putative neuroprotective agents.
Trans-crocin 4 (TC4) is an important carotenoid constituent of saffron showing potential activity against Alzheimer's Disease (AD) due to its antioxidant and antiamyloidogenic properties. Metabolomics is an emerging scientific field that enhances biomarker discovery and reveals underlying biochemical mechanisms aiming towards the early subclinical diagnosis of diseases. To date, there are no reports on the changes induced to mice plasma metabolome after TC4 administration. We report a novel untargeted UHPLC-ESI HRMS metabolomics strategy to determine the alteration of the metabolic fingerprint following i.p. administration of TC4 in male and female mice. Blood samples from fiftysix mice treated with TC4 as well as from control animals were analyzed with UHPLC-ESI HRMS. Statistical evaluation of the results was achieved by multivariate analysis (MVA), i.e., principal component analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA) in order to discover the variables that contributed to the discrimination between treated and untreated groups which were identified by online database searching (e.g., Metlin, HMDB, KEGG) aided by chemometric processing, e.g., covariance searching etc. Due to the high variability imposed by various factors, e.g., sex of the animals participating in the study, administration dose and time-points of sacrifice, multilevel sparse PLS-DA analysis, e.g., splitting variation to each individual component, has been employed as a more efficient approach for such designs. This methodology allowed the identification of the time sequence of metabolome changes due to the administration of TC4, whereas a sex-related effect on the metabolome is indicated, denoting that the administration in both sexes is indispensable in order to acquire safe conclusions as reliable metabolome pictures. The results demonstrated a number of annotated metabolites playing a potential role in neuroprotection while they are closely related to AD. Moreover, five additional annotated metabolites were involved in the steroid biosynthesis pathway while two of them may be considered as putative neuroprotective agents.
Recent modeling of Neutron Star Interior Composition Explorer (NICER) observations of the millisecond pulsar PSR J0030+0451 suggests that the magnetic field of the pulsar is non-dipolar. We construct a magnetic field configuration where foot points of the open field lines closely resemble the hotspot configuration from NICER observations. Using this magnetic field as input, we perform force-free simulations of the magnetosphere of PSR J0030+0451, showing the three-dimensional structure of its plasma-filled magnetosphere. Making simple and physically motivated assumptions about the emitting regions, we are able to construct the multiwavelength lightcurves that qualitatively agree with the corresponding observations. The agreement suggests that multipole magnetic structures are the key to modeling this type of pulsar, and can be used to constrain the magnetic inclination angle and the location of radio emission.
The computational study of x-pinch plasmas driven by pulsed power generators demands the development of advanced numerical models and simulation schemes, able to enlighten the experiments. The capabilities of PLUTO code are here extended to enable the investigation of low current produced x-pinch plasmas. The numerical modules of the code used and modified are presented and discussed. The simulations results are compared to experiments, carried out on a table-top pulsed power plasma generator implemented in a mode of producing a peak current of ∼45 kA with a rise time (10%-90%) of 50 ns, loaded with Tungsten wires. The structural evolution of plasma density is studied and its influence on the magnetic field is analyzed with the help of the new simulation data. The simulated areal mass density is compared with the experimentally measured dense opaque region to enlighten the dense plasma evolution. In addition, the measured areal electron density is compared to the simulation results. Moreover, the new simulation data offer valuable insights to the main jet formation mechanisms, which are further analyzed and discussed in relation to the influence of the J× B force and the momentum.
The computational study of x-pinch plasmas driven by pulsed power generators demands the development of advanced numerical models and simulation schemes, able to enlighten the experiments. The capabilities of PLUTO code are here extended to enable the investigation of low current produced x-pinch plasmas. The numerical modules of the code used and modified are presented and discussed. The simulations results are compared to experiments, carried out on a table-top pulsed power plasma generator implemented in a mode of producing a peak current of ∼45 kA with a rise time (10%-90%) of 50 ns, loaded with Tungsten wires. The structural evolution of plasma density is studied and its influence on the magnetic field is analyzed with the help of the new simulation data. The simulated areal mass density is compared with the experimentally measured dense opaque region to enlighten the dense plasma evolution. In addition, the measured areal electron density is compared to the simulation results. Moreover, the new simulation data offer valuable insights to the main jet formation mechanisms, which are further analyzed and discussed in relation to the influence of the J× B force and the momentum.
The increased development of computer vision technology combined with the increased availability of innovative platforms with ultra-high-resolution sensors, has generated new opportunities and fields for investigation in the engineering geology domain in general and landslide identification and characterization in particular. During the last decade, the so-called Unmanned Aerial Vehicles (UAVs) have been evaluated for diverse applications such as 3D terrain analysis, slope stability, mass movement hazard and risk management. Their advantages of detailed data acquisition at a low cost and effective performance identifies them as leading platforms for site-specific 3D modelling. In this study, the proposed methodology has been developed based on Object-Based Image Analysis (OBIA) and fusion of multivariate data resulted from UAV photogrammetry processing in order to take full advantage of the produced data. Two landslide case studies within the territory of Greece, with different geological and geomorphological characteristics, have been investigated in order to assess the developed landslide detection and characterization algorithm performance in distinct scenarios. The methodology outputs demonstrate the potential for an accurate characterization of individual landslide objects within this natural process based on ultra high-resolution data from close range photogrammetry and OBIA techniques for landslide conceptualization. This proposed study shows that UAV-based landslide modelling on the specific case sites provides a detailed characterization of local scale events in an automated sense with high adaptability on the specific case site.
Lekkas E, Mavroulis S, Gogou M, Papadopoulos GA, Triantafyllou I, Katsetsiadou KN, Kranis H, Skourtsos E, Carydis P, Voulgaris N. The October 30, 2020, Mw 6.9 Samos (Greece) earthquake. Newsletter of Environmental, Disaster and Crises Management Strategies. 2020;21.
In this paper, for the first time in literature, we introduce one-sided weighted inverses and extend the notions of one-sided inverses, outer inverses and inverses along given elements. Although our results are new and in the matrix case, we decided to present them in tensor space with reshape operator. For this purpose, a left and right (M,N)-weighted (B,C)-inverse and the (M,N)-weighted (B,C)-inverse of a tensor are defined. Additionally, necessary and sufficient conditions for the existence of these new inverses are presented. We describe the sets of all left (or right) (M,N)-weighted (B,C)-inverses of a given tensor. As consequences of these results, we consider the one-sided (B,C)-inverse, (B,C)-inverse, one-sided inverse along a tensor and inverse along a tensor. Further, we introduce a (M,N)-weighted (B,C)-outer inverse and a W-weighted (B,C)-outer inverse of tensors with a few characterizations. Then, corresponding algorithms for computing various types of outer inverses of tensors are proposed, implemented and tested. The prowess of the proposed inverses are demonstrated for finding the solution of Poisson problem and the restoration of 3D color images.
Chemical study of the CH2Cl2−MeOH (1:1) extract from the sponge Haliclona sp. collected in Mayotte highlighted three new long-chain highly oxygenated polyacetylenes, osirisynes G-I (1–3) together with the known osirisynes A (4), B (5), and E (6). Their structures were elucidated by 1D and 2D NMR spectra and HRESIMS and MS/MS data. All compounds were evaluated on catalase and sirtuin 1 activation and on CDK7, proteasome, Fyn kinase, tyrosinase, and elastase inhibition. Five compounds (1; 3–6) inhibited proteasome kinase and two compounds (5–6) inhibited CDK7 and Fyn kinase. Osirisyne B (5) was the most active compound with IC50 on FYNB kinase, CDK7 kinase, and proteasome inhibition of 18.44 µM, 9.13 µM, and 0.26 µM, respectively.
AIM: This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic.
METHOD: This was an international cohort study of patients undergoing elective resection of colon or rectal cancer without preoperative suspicion of SARS-CoV-2. Centres entered data from their first recorded case of COVID-19 until 19 April 2020. The primary outcome was 30-day mortality. Secondary outcomes included anastomotic leak, postoperative SARS-CoV-2 and a comparison with prepandemic European Society of Coloproctology cohort data.
RESULTS: From 2073 patients in 40 countries, 1.3% (27/2073) had a defunctioning stoma and 3.0% (63/2073) had an end stoma instead of an anastomosis only. Thirty-day mortality was 1.8% (38/2073), the incidence of postoperative SARS-CoV-2 was 3.8% (78/2073) and the anastomotic leak rate was 4.9% (86/1738). Mortality was lowest in patients without a leak or SARS-CoV-2 (14/1601, 0.9%) and highest in patients with both a leak and SARS-CoV-2 (5/13, 38.5%). Mortality was independently associated with anastomotic leak (adjusted odds ratio 6.01, 95% confidence interval 2.58-14.06), postoperative SARS-CoV-2 (16.90, 7.86-36.38), male sex (2.46, 1.01-5.93), age >70 years (2.87, 1.32-6.20) and advanced cancer stage (3.43, 1.16-10.21). Compared with prepandemic data, there were fewer anastomotic leaks (4.9% versus 7.7%) and an overall shorter length of stay (6 versus 7 days) but higher mortality (1.7% versus 1.1%).
CONCLUSION: Surgeons need to further mitigate against both SARS-CoV-2 and anastomotic leak when offering surgery during current and future COVID-19 waves based on patient, operative and organizational risks.
The spatial and temporal scale of flash flood occurrence provides limited opportunities for observations and measurements using conventional monitoring networks, turning the focus to event-based, post-disaster studies. Post-flood surveys exploit field evidence to make indirect discharge estimations, aiming to improve our understanding of hydrological response dynamics under extreme meteorological forcing. However, discharge estimations are associated with demanding fieldwork aiming to record in small timeframes delicate data and data prone-to-be-lost and achieve the desired accuracy in measurements to minimize various uncertainties of the process. In this work, we explore the potential of unmanned aerial systems (UAS) technology, in combination with the Structure for Motion (SfM) and optical granulometry techniques in peak discharge estimations. We compare the results of the UAS-aided discharge estimations to estimates derived from differential Global Navigation Satellite System (d-GNSS) surveys and hydrologic modelling. The application in the catchment of Soures torrent in Greece, after a catastrophic flood shows that the UAS-aided approach succeeded in determining peak discharge with high accuracy. The technique proved to be particularly effective, providing flexibility in terms of resources and timing, although there are certain limitations to its applicability. The application highlighted important advantages and certain weaknesses of these emerging tools in indirect discharge estimations, which we discuss in detail.
Background:Although several studies that rely on self-determinationtheory have shown the positive interrelations among perceived needsupportive learning environment, needs satisfaction, quality ofmotivation, and desired outcomes in the context of physical education,only few studies have tested so far the full sequence of relations withina single integrated model.Purpose:The main aim of this study was to test whether indeed needssatisfaction and in turn quality of motivation mediate the relations ofneed supportive learning environment to physical activity engagementand intentions.Method:Participants were 1120 Spanish students (49.9% males;Mage =11.70 years;SD= 1.63; range = 10–17 years) from 30 classes out of 13primary and secondary schools.Results:The multilevel path model showed a positive relation ofperceived need-supportive teaching to physical activity engagementand intentions by means of needs satisfaction and autonomousmotivation and a negative relation of perceived need-thwartingteaching to engagement and intentions by means of needs frustrationand amotivation. Although controlled motivation was found toassociate with need frustration and need-thwarting teaching it was notassociated with engagement and intentions.Conclusion:the presentfindings suggest that the type of teaching styleemployed by the teachers is decisive to achieve positive consequences inphysical education students.
Recent developments in digital technologies regarding the cultural heritage domain have driven technological trends in comfortable and convenient traveling, by offering interactive and personalized user experiences. The emergence of big data analytics, recommendation systems and personalization techniques have created a smart research field, augmenting cultural heritage visitor’s experience. In this work, a novel, hybrid recommender system for cultural places is proposed, that combines user preference with cultural tourist typologies. Starting with the McKercher typology as a user classification research base, which extracts five categories of heritage tourists out of two variables (cultural centrality and depth of user experience) and using a questionnaire, an enriched cultural tourist typology is developed, where three additional variables governing cultural visitor types are also proposed (frequency of visits, visiting knowledge and duration of the visit). The extracted categories per user are fused in a robust collaborative filtering, matrix factorization-based recommendation algorithm as extra user features. The obtained results on reference data collected from eight cities exhibit an improvement in system performance, thereby indicating the robustness of the presented approach.
Triassic rift-related volcanic rocks outcrop over all mainland Greece, comprising of trachybasalts and basaltic trachyandesites. Relatively immobile to the effects of alteration processes major and trace element abundances classify the volcanics into OIB and E-MORB lavas. They have mainly been distinguished based upon their: i) LREE contents, ii) silica-saturation index (S·I.), iii) Zr/Nb and Nb/Y ratio values; iv) Th, U, and Ta contents v) geotectonic discrimination diagrams. Their geochemistry indicates that most rocks were affected by moderate to extensive differentiation processes, mostly expressed by clinopyroxene fractionation. Some of the OIB and E-MORB volcanics are considered as primitive undersaturated, displaying (low SiO2, Zr/Nb and S.I. values, enhanced CaO/Al2O3 ratios). Calculated average mantle potential temperatures are comparable (1410 °C OIB; 1370 °C E-MORB), with melt fractions estimated at 3–5% for primary OIB magmas and 6–8% for primary E-MORB magmas. An asthenospheric origin is inferred for the OIB lavas, with melting in the garnet stability field (75–95 km; 2.5–3.0 GPa), whereas E-MORB parent magmas were formed with melting in the garnet/spinel (transitional) stability field (55–70 km; 1.8–2.2 GPa). The Hellenic Triassic rift-related lavas were most likely generated and erupted after lithospheric attenuation and extension, followed by subsequent asthenospheric upwelling of the mantle. The high calculated partial melting degrees and the observed thick and voluminous lava formations account for fast-spreading of the Tethys ridge during the Triassic. Temperature results suggest that the Hellenic Triassic rift-related magmas were generated from mantle at ambient temperature, render a mantle plume-based scenario improbable.
Cepheids are pulsating variable stars with a periodic chromospheric response at UV wavelengths close to their minimum radius phase. Recently, an X-ray variable signature was captured in observations during the maximum radius phase. This X-ray emission came as a surprise and is not understood. In this work, we use the modern astrophysical code PLUTO to investigate the effects of pulsations on Cepheid X-ray emission. We run a number of hydrodynamic numerical simulations with a variety of initial and boundary conditions in order to explore the capability of shocks to produce the observed phase-dependent X-ray behavior. Finally, we use the Simulated Observations of X-ray Sources (SOXS) package to create synthetic spectra for each simulation case and link our simulations to observables. We show that, for certain conditions, we can reproduce observed X-ray fluxes at phases 0.4-0.8 when the Cepheid is at maximum radius. Our results span a wide range of mass-loss rates, 2 × 10-13 M⊙ yr-1 to 3 × 10-8 M⊙ yr-1, and peak X-ray luminosities, 5 × 10-17 erg cm-2 s-1 to 1.4 × 10-12 erg cm-2 s-1. We conclude that Cepheids exhibit two-component emission with (a) shock waves being responsible for the phase-dependent variable emission (phases 0.2-0.6) and (b) a separate quiescent mechanism being the dominant emission mechanism for the remaining phases.
Cepheids are pulsating variable stars with a periodic chromospheric response at UV wavelengths close to their minimum radius phase. Recently, an X-ray variable signature was captured in observations during the maximum radius phase. This X-ray emission came as a surprise and is not understood. In this work, we use the modern astrophysical code PLUTO to investigate the effects of pulsations on Cepheid X-ray emission. We run a number of hydrodynamic numerical simulations with a variety of initial and boundary conditions in order to explore the capability of shocks to produce the observed phase-dependent X-ray behavior. Finally, we use the Simulated Observations of X-ray Sources (SOXS) package to create synthetic spectra for each simulation case and link our simulations to observables. We show that, for certain conditions, we can reproduce observed X-ray fluxes at phases 0.4-0.8 when the Cepheid is at maximum radius. Our results span a wide range of mass-loss rates, 2 × 10-13 M☉ yr-1 to 3 × 10-8 M☉ yr-1, and peak X-ray luminosities, 5 × 10-17 erg cm-2 s-1 to 1.4 × 10-12 erg cm-2 s-1. We conclude that Cepheids exhibit two-component emission with (a) shock waves being responsible for the phase-dependent variable emission (phases 0.2-0.6) and (b) a separate quiescent mechanism being the dominant emission mechanism for the remaining phases.
Assessment of the long-term population-level effects of HIV interventions is an ongoing public health challenge. Following the implementation of a Transmission Reduction Intervention Project (TRIP) in Odessa, Ukraine, in 2013-2016, we obtained HIV pol gene sequences and used phylogenetics to identify HIV transmission clusters. We further applied the birth-death skyline model to the sequences from Odessa (n = 275) and Kyiv (n = 92) in order to estimate changes in the epidemic's effective reproductive number (R(e)) and rate of becoming uninfectious (δ). We identified 12 transmission clusters in Odessa; phylogenetic clustering was correlated with younger age and higher average viral load at the time of sampling. Estimated R(e) were similar in Odessa and Kyiv before the initiation of TRIP; R(e) started to decline in 2013 and is now below R(e) = 1 in Odessa (R(e) = 0.4, 95%HPD 0.06-0.75), but not in Kyiv (R(e) = 2.3, 95%HPD 0.2-5.4). Similarly, estimates of δ increased in Odessa after the initiation of TRIP. Given that both cities shared the same HIV prevention programs in 2013-2019, apart from TRIP, the observed changes in transmission parameters are likely attributable to the TRIP intervention. We propose that molecular epidemiology analysis can be used as a post-intervention effectiveness assessment tool.
Numerous studies covering some aspects of SARS-CoV-2 data analyses are being published on a daily basis, including a regularly updated phylogeny on nextstrain.org. Here, we review the difficulties of inferring reliable phylogenies by example of a data snapshot comprising a quality-filtered subset of 8, 736 out of all 16, 453 virus sequences available on May 5, 2020 from gisaid.org. We find that it is difficult to infer a reliable phylogeny on these data due to the large number of sequences in conjunction with the low number of mutations. We further find that rooting the inferred phylogeny with some degree of confidence either via the bat and pangolin outgroups or by applying novel computational methods on the ingroup phylogeny does not appear to be credible. Finally, an automatic classification of the current sequences into sub-classes using the mPTP tool for molecular species delimitation is also, as might be expected, not possible, as the sequences are too closely related. We conclude that, although the application of phylogenetic methods to disentangle the evolution and spread of COVID-19 provides some insight, results of phylogenetic analyses, in particular those conducted under the default settings of current phylogenetic inference tools, as well as downstream analyses on the inferred phylogenies, should be considered and interpreted with extreme caution.
A generalized rigorous Floquet scattering-matrix method for stratified anisotropic optical media, subject to a periodic spatiotemporal modulation, is formulated and implemented. The method is applied for studying an optomagnonic cavity formed by an in-plane magnetized ferrite film, in which a magnetostatic surface spin wave propagates, sandwiched between two nonmagnetic dielectric Bragg mirrors. Our results provide unambiguous evidence that externally incident light, when trapped in a cavity mode, experiences a strongly enhanced interaction with the spin wave due to the increased coupling time, which can give rise to pronounced effects if the appropriate selection rules are fulfilled. By means of systematic calculations we reveal and explain some remarkable features of this interaction, such as formation of spectral gaps, controllable transmission, and the emergence of inelastic diffracted beams, and show that efficient conversion of the optical wave can be achieved by triply resonant inelastic scattering through (multi)magnon absorption and emission processes.
Tzanakaki A, Varvarigos E, Muñoz R, Nejabati R, Yoshikane N, Anastasopoulos M. PNET “ONDM 2019” special issue. Photonic Network Communications [Internet]. 2020;40(3):123 - 125. Website
Tzanakaki A, Varvarigos E, Muñoz R, Nejabati R, Yoshikane N, Anastasopoulos M. PNET “ONDM 2019” special issue. Photonic Network Communications [Internet]. 2020;40:123-125. Website
W Ursae Majoris-type binaries belong to the old population of our Galaxy, while their metallicity is close to solar. Their physical properties, kinematics and spatial distribution reflect the properties of their stellar progenitors. This study focuses on the spatial distribution of W UMa's in our solar neighborhood within a 500 pc radius, with a combined astrometric, photometric and spectroscopic determination of their stellar parameters. The sample is carefully selected, in order to fulfill certain criteria, and has well defined metallicity and distance parameters. H-R diagram, as well as similar correlation plots (mass-radius and mass-luminosity), show that the primary (more massive) components in such systems are located close or below the ZAMS region, while secondary components seem to be evolved, as a result of their common envelope geometry. Some prominent outliers are carefully examined in order to judge the environmental properties and evolution in certain locations of the Milky Way. It is found that metallicity is not correlated with distance, but there is a weak correlation between metallicity [M/H] and evolution state, as it is expressed by the location of the systems in the H-R diagram, the type of binary (A or W), and temperature.
Marathon Lake is an artificial reservoir with great environmental, ecological, social, and economic significance because it was the main source of water for Athens, the capital of Greece, for many years. The present study details the first attempt to map sedimentation in Marathon Lake in detail, using bathymetric mapping and soil erosion field surveying of the torrent watershed areas. First, the results of a bathymetric survey carried out in 2011 were compared with topographic maps that pre-date the construction of the dam. Based on this comparison, an estimated 8.34 hm3 of sediment have been deposited in the 80 years since the dam’s construction. In the current survey, the Revised Universal Soil Loss Equation (RUSLE) was used to estimate soil loss in the watershed area of the streams that end in Marathon Lake. The estimated value from the RUSLE was substantially lower (3.02 hm3) than that calculated in the bathymetric survey.
Tzanakaki A, Varvarigos M, Muñoz R, Nejabati R, Yoshikane N, Anastasopoulos M, Marquez-Barja J. Preface. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [Internet]. 2020;11616 LNCS:v-vi. Website
OBJECTIVE: We aim to show the feasibility of using an integrated prevention and care continuum (PCC) model as a complete and improved tool for HIV control measurement and programming. Alignment of prevention and care continua is essential to further improve health outcomes and minimize HIV transmission risk. DESIGN: Cross-sectional study. METHODS: Data from 977 persons who inject drugs (PWID) collected in 2011-2016 in Tallinn, Estonia, were used to construct an HIV PCC for PWID, stratified by risk for acquiring or transmitting HIV infection and by coverage of combined interventions. We also estimated the average protective effect of current levels of intervention provision. RESULTS: 74.4%, 20.3% and 35.2% of PWID were currently using needle and syringe programmes (NSP), drug treatment and HIV testing, respectively. 51.1% of current PWID were HIV seropositive and of those 62.5% were currently on ART and 19.0% were virally suppressed. Across the PCC, individuals moved between categories of being aware and ever using drug treatment (resulting in -50% "leakage"); from ever having used to currently using drug treatment (-59%); between "ever testing" and "current (continuous) testing" (-62%); and from self-reported antiretroviral therapy (ART) adherence to viral suppression (-70%). Use of prevention services was higher among those at risk of transmission (HIV positive). The overall reduction in acquisition risk among HIV-negative PWID was 77.7% (95% CrI 67.8-84.5%), estimated by the modelled protective effects of current levels of NSP, drug treatment and ART compared to none of these services. CONCLUSIONS: Our findings suggest that developing a cohesive model for HIV prevention and treatment is feasible and reflects the bi-directional relationships between prevention and care. The integrated continuum model indicates the major factors which may predict the epidemic course and control response.
INTRODUCTION: Both stable chronic obstructive pulmonary disease (COPD) and acute exacerbations represent leading causes of death, disability and healthcare expenditure. They are complex, heterogeneous and their mechanisms are poorly understood. The role of respiratory viruses has been studied extensively but is still not adequately addressed clinically. Through a rigorous evidence update, we aim to define the prevalence and clinical burden of the different respiratory viruses in stable COPD and exacerbations, and to investigate whether viral load of usual respiratory viruses could be used for diagnosis of exacerbations triggered by viruses, which are currently not diagnosed or treated aetiologically. METHODS AND ANALYSIS: Based on a prospectively registered protocol, we will systematically review the literature using standard methods recommended by the Cochrane Collaboration and the Grading of Recommendations Assessment, Development and Evaluation working group. We will search Medline/PubMed, Excerpta Medica dataBASE (EMBASE), the Cochrane Library, the WHO's Clinical Trials Registry and the proceedings of relevant international conferences on 2 March 2020. We will evaluate: (A) the prevalence of respiratory viruses in stable COPD and exacerbations, (B) differences in the viral loads of respiratory viruses in stable COPD vs exacerbations, to explore whether the viral load of prevalent respiratory viruses could be used as a diagnostic biomarker for exacerbations triggered by viruses and (C) the association between the presence of respiratory viruses and clinical outcomes in stable COPD and in exacerbations. ETHICS AND DISSEMINATION: Ethics approval is not required since no primary data will be collected. Our findings will be presented in national and international scientific conferences and will be published in peer reviewed journals. Respiratory viruses currently represent a lost opportunity to improve the outcomes of both stable COPD and exacerbations. Our work aspires to 'demystify' the prevalence and clinical burden of viruses in stable COPD and exacerbations and to promote clinical and translational research. PROSPERO REGISTRATION NUMBER: CRD42019147658.
The current paper emphasizes on the debate referring to how historical case studies are processed in social sciences and humanities and which limitations have to be surpassed towards a clear-cut descriptive analysis. Systemic Geopolitical Analysis does offer the necessary set of methodological tools contributing to a reading of causes and effects without any deontological bias. To this aim, it uses a sequence of methodological stages for the description, the standardization, the terminology definition, the synthesis and finally, the draw of conclusions named as “sample of redistributions of power”. This last part is essentially followed by the geostrategic synthesis part; the descriptive and clearly scientific in which the geopolitical framework is given is followed by the subjective geostrategic one in which the challenges, dilemmas, threats and opportunities on behalf of a certain actor are presented. Based on this legacy, processing historical case studies is made with a clear distinction between objectivity and subjectivity or, in other words, between science with ontological reference and geostrategic recommendations. This paper replies to the epistemological legacy Systemic Geopolitical Analysis relying on as well as its core theoretical and methodological contribution.
Neocortex development depends on neural stem cell proliferation, cell differentiation, neurogenesis, and neuronal migration. Cytoskeletal regulation is critical for all these processes, but the underlying mechanisms are only poorly understood. We previously implicated the cytoskeletal regulator profilin1 in cerebellar granule neuron migration. Since we found profilin1 expressed throughout mouse neocortex development, we here tested the hypothesis that profilin1 is crucial for neocortex development. We found no evidence for impaired neuron migration or layering in the neocortex of profilin1 mutant mice. However, proliferative activity at basal positions was doubled in the mutant neocortex during mid-neurogenesis, with a drastic and specific increase in basal Pax6+ cells indicative for elevated numbers of basal radial glia (bRG). This was accompanied by transiently increased neurogenesis and associated with mild invaginations resembling rudimentary neocortex folds. Our data are in line with a model in which profilin1-dependent actin assembly controls division of apical radial glia (aRG) and thereby the fate of their progenies. Via this mechanism, profilin1 restricts cell delamination from the ventricular surface and, hence, bRG production and thereby controls neocortex development in mice. Our data support the radial cone hypothesis" claiming that elevated bRG number causes neocortex folds.
The origin of high-energy emission in blazars jets (I.e., leptonic versus hadronic) has been a longstanding matter of debate. Here, we focus on one variant of hadronic models where proton synchrotron radiation accounts for the observed steady γ-ray blazar emission. Using analytical methods, we derive the minimum jet power ( ${P}_{j,\min }$ ) for the largest blazar sample analyzed to date (145 sources), taking into account uncertainties of observables and jet's physical parameters. We compare ${P}_{j,\min }$ against three characteristic energy estimators for accreting systems, I.e., the Eddington luminosity, the accretion disk luminosity, and the power of the Blandford-Znajek process, and find that ${P}_{j,\min }$ is about 2 orders of magnitude higher than all energetic estimators for the majority of our sample. The derived magnetic field strengths in the emission region require either large amplification of the jet's magnetic field (factor of 30) or place the γ-ray production site at sub-pc scales. The expected neutrino emission peaks at ∼0.1-10 EeV, with typical peak neutrino fluxes ∼10-4 times lower than the peak γ-ray fluxes. We conclude that if relativistic hadrons are present in blazar jets, they can only produce a radiatively subdominant component of the overall spectral energy distribution of the blazar's steady emission.
RATIONALE: Νeurosteroids, like dehydroepiandrosterone (DHEA), play an important role in neurodegeneration and neural protection, but they are metabolized in androgens, estrogens, or other active metabolites. A newly developed synthetic DHEA analog, BNN27 ((20R)-3β,21-dihydroxy-17R,20-epoxy-5-pregnene), exerts neurotrophic and neuroprotective actions without estrogenic or androgenic effects. OBJECTIVES: This study aimed to investigate potential anxiolytic or antidepressant properties of BNN27. METHODS: Male and female adult Wistar rats were treated with BNN27 (10, 30, or 90 mg/kg, i.p.) and subjected to behavioral tests measuring locomotion, exploration, and "depressive-like" behavior (open field, light/dark box, hole-board, and forced swim tests). The hippocampus and prefrontal cortex were collected for glutamate and GABA measurements, and trunk blood was collected for gonadal hormone analysis. RESULTS: Acute high-dose BNN27 reduced locomotion and exploratory behavior in both sexes. Intermediate acute doses (30 mg/kg) of BNN27 reduced exploration and testosterone levels only in males, and enhanced progesterone levels in both sexes. Notably, with the present design, BNN27 had neither anxiolytic nor antidepressant effects and did not affect estrogen levels. Interestingly, acute administration of a low BNN27 dose (10 mg/kg) increased glutamate turnover, GABA, and glutamine levels in the hippocampus. The same dose also enhanced glutamate levels in the prefrontal cortex of males only. Sex differences were apparent in the basal levels of behavioral, hormonal, and neurochemical parameters, as expected. CONCLUSIONS: BNN27 affects locomotion, progesterone, and testosterone levels, as well as the glutamatergic and GABAergic systems of the hippocampus and prefrontal cortex in a sex-dependent way.
The knapsack problem is a problem in combinatorial optimization, and in many such problems, exhaustive search is not tractable. In this paper, we describe and analyze the randomized time-varying knapsack problem (RTVKP) as a time-varying integer linear programming (TV-ILP) problem. In this way, we present the on-line solution to the RTVKP combinatorial optimization problem and highlight the restrictions of static methods. In addition, the RTVKP is applied in the field of finance and converted into a portfolio insurance problem. Our methodology is confirmed by simulation tests in real-world data sets, in order to explain being an excellent alternative to traditional approaches.
The organization of the mitochondrial electron transport chain proteins into supercomplexes (SCs) is now undisputed; however, their assembly process, or the role of differential expression isoforms, remain to be determined. In Saccharomyces cerevisiae, cytochrome c oxidase (CIV) forms SCs of varying stoichiometry with cytochrome bc(1) (CIII). Recent studies have revealed, in normoxic growth conditions, an interface made exclusively by Cox5A, the only yeast respiratory protein that exists as one of two isoforms depending on oxygen levels. Here we present the cryo-EM structures of the III(2)-IV(1) and III(2)-IV(2) SCs containing the hypoxic isoform Cox5B solved at 3.4 and 2.8 A, respectively. We show that the change of isoform does not affect SC formation or activity, and that SC stoichiometry is dictated by the level of CIII/CIV biosynthesis. Comparison of the CIV(5B)- and CIV(5A)-containing SC structures highlighted few differences, found mainly in the region of Cox5. Additional density was revealed in all SCs, independent of the CIV isoform, in a pocket formed by Cox1, Cox3, Cox12, and Cox13, away from the CIII-CIV interface. In the CIV(5B)-containing hypoxic SCs, this could be confidently assigned to the hypoxia-induced gene 1 (Hig1) type 2 protein Rcf2. With conserved residues in mammalian Hig1 proteins and Cox3/Cox12/Cox13 orthologs, we propose that Hig1 type 2 proteins are stoichiometric subunits of CIV, at least when within a III-IV SC.
The joint detection of GW170817/GRB 170817 confirmed the long-standing theory that binary neutron star mergers produce short gamma-ray burst (sGRB) jets that can successfully break out of the surrounding ejecta. At the same time, the association with a kilonova provided unprecedented information regarding the physical properties (such as masses and velocities) of the different ejecta constituents. Combining this knowledge with the observed luminosities and durations of cosmological sGRBs detected by the Burst Alert Telescope onboard the Neil Gehrels Swift Observatory, we revisit the breakout conditions of sGRB jets. Assuming self-collimation of sGRB jets does not play a critical role, we find that the time interval between the binary merger and the launch of a typical sGRB jet is $\lesssim 0.1\,{\rm{s}}$ . We also show that for a fraction of at least $\sim 30 \% $ of sGRBs, the usually adopted assumption of static ejecta is inconsistent with observations, even if the polar ejecta mass is an order of magnitude smaller than that in GRB 170817. Our results disfavor magnetar central engines for powering cosmological sGRBs, limit the amount of energy deposited in the cocoon prior to breakout, and suggest that the observed delay of ∼1.7 s in GW170817/GRB 170817 between the gravitational wave and gamma-ray signals is likely dominated by the propagation time of the jet to the gamma-ray production site.
Maintenance of synaptic homeostasis is a challenging task, due to the intricate spatial organization and intense activity of synapses. Typically, synapses are located far away from the neuronal cell body, where they orchestrate neuronal signalling and communication, through neurotransmitter release. Stationary mitochondria provide energy required for synaptic vesicle cycling, and preserve ionic balance by buffering intercellular calcium at synapses. Thus, synaptic homeostasis is critically dependent on proper mitochondrial function. Indeed, defective mitochondrial metabolism is a common feature of several neurodegenerative and psychiatric disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), bipolar disorders and schizophrenia among others, which are also accompanied by excessive synaptic abnormalities. Specialized and compartmentalized quality control mechanisms have evolved to restore and maintain synaptic energy metabolism. Here, we survey recent advances towards the elucidation of the pivotal role of mitochondria in neurotransmission and implicating mitophagy in the maintenance of synaptic homeostasis during ageing.
Beldachi AF, Anastasopoulos M, Manolopoulos A, Tzanakaki A, Nejabati R, Simeondou D. Resilient Cloud-RANs Adopting Network Coding. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [Internet]. 2020;11616 LNCS:349-361. Website
AbsractPurposeTo demonstrate that oral drug absorption is terminated in finite time. To develop models based on biopharmaceutical/physiological and finite absorption time concepts.MethodsThe models are based on i) the passive drug diffusion mechanism under the sink conditions principle ii) the rate limiting role of the drug's properties solubility and permeability and iii) the relevant restrictions associated with the gastrointestinal transit times of drug in the stomach, the small intestines and the colon. Two input functions of constant rate are considered for the absorption of drug from i) the stomach/small intestines with an upper limit of 5 h and ii) the colon with an upper limit of 30 h. Branched differential equations were written for the time course of drug in the body.ResultsSimulations were performed using different scenarios, assuming a variety of drug properties and limited or non-existent absorption from the colon. Literature oral data of cephradine, ibuprofen, flurbiprofen and itraconazole were analyzed. For all drugs examined, nice fittings of the branched differential equations to the experimental data were observed.ConclusionsFor all drugs the absorption process was terminated in the small intestine. The meaning of partial AUCs, Cmax, tmax are questioned. Applications of these models to IVIVC are anticipated.
We present the results obtained from the analysis of high-mass X-ray binary pulsar 4U 1909+07 using NuSTAR and Astrosat observations in July 2015 and 2017, respectively. X-ray pulsations at ≈604 s are clearly detected in our study. Based on the long-term spin-frequency evolution, the source is found to spun-up in the last 17 yr. We observed a strongly energy-dependent pulse profile that evolved from a complex broad structure in soft X-rays into a profile with a narrow emission peak followed by a plateau in energy ranges above 20 keV. This behaviour ensured a positive correlation between the energy and pulse fraction. The pulse profile morphology and its energy evolution are almost similar during both the observations, suggesting a persistent emission geometry of the pulsar over time. The broad-band energy spectrum of the pulsar is approximated by an absorbed high-energy exponential cut-off power-law model with iron emission lines. In contrast to the previous report, we found no statistical evidence for the presence of cyclotron absorption features in the X-ray spectra. We performed phase-resolved spectroscopy using data from the NuSTAR observation. Our results showed a clear signature of absorbing material at certain pulse phases of the pulsar. These findings are discussed in terms of stellar wind distribution and its effect on the beam geometry of this wind-fed accreting neutron star. We also reviewed the subsonic quasi-spherical accretion theory and its implication on the magnetic field of 4U 1909+07 depending on the global spin-up rate.
Hadronic supercriticalities are radiative instabilities that appear when large amounts of energy are stored in relativistic protons. When the proton energy density exceeds some critical value, a runaway process is initiated resulting in the explosive transfer of the proton energy into electron-positron pairs and radiation. The runaway also leads to an increase of the radiative efficiency, namely the ratio of the photon luminosity to the injected proton luminosity. We perform a comprehensive study of the parameter space by investigating the onset of hadronic supercriticalities for a wide range of source parameters (I.e. magnetic field strengths of 1 G-100 kG and radii of 1011-1016 cm) and maximum proton Lorentz factors (103-109). We show that supercriticalities are possible for the whole range of source parameters related to compact astrophysical sources, like gamma-ray bursts and cores and jets of active galactic nuclei. We also provide an in-depth look at the physical mechanisms of hadronic supercriticalities and show that magnetized relativistic plasmas are excellent examples of non-linear dynamical systems in high-energy astrophysics.
Hadronic supercriticalities are radiative instabilities that appear when large amounts of energy are stored in relativistic protons. When the proton energy density exceeds some critical value, a runaway process is initiated resulting in the explosive transfer of the proton energy into electron-positron pairs and radiation. The runaway also leads to an increase of the radiative efficiency, namely the ratio of the photon luminosity to the injected proton luminosity. We perform a comprehensive study of the parameter space by investigating the onset of hadronic supercriticalities for a wide range of source parameters (I.e. magnetic field strengths of 1 G-100 kG and radii of 1011-1016 cm) and maximum proton Lorentz factors (103-109). We show that supercriticalities are possible for the whole range of source parameters related to compact astrophysical sources, like gamma-ray bursts and cores and jets of active galactic nuclei. We also provide an in-depth look at the physical mechanisms of hadronic supercriticalities and show that magnetized relativistic plasmas are excellent examples of non-linear dynamical systems in high-energy astrophysics.
In the course of a primary screening of 614 microbial actinomycete extracts for the discovery of tyrosinase inhibitors, the EtOAc extract of the fermentation broth of the strain Streptomyces sp. CA-129531 isolated from a Martinique sample, exhibited in cell free and cell-based assays the most promising activity (IC50 value of 63 $μ$g/mL). Scaled-up production in a bioreactor led to the isolation of one new trichostatic acid analogue, namely trichostatic acid B (1), along with six known trichostatin derivatives (2-7), four diketopiperazines (8-11), two butyrolactones (12-13) and one hydroxamic acid siderophore (14). Among them, trichostatin A (4) showed six times stronger anti-tyrosinase activity (IC50 2.18 $μ$Μ) than kojic acid (IC50 14.07 $μ$Μ) used as a positive control. Deoxytrichostatin A (6) displayed also strong inhibitory activity against tyrosinase (IC50 19.18 $μ$Μ). Trichostatin A production in bioreactor started together with the exponential phase of growth (day 4) and the maximum concentration was reached at day 9 (2.67 ± 0.13 $μ$g/mL). Despite the cytotoxicity of some individual components, no cytotoxic effect on HepG2, A2058, A549, MCF-7 and MIA PaCa-2 cell lines was found for the EtOAc extract (IC50 {\textgreater} 2.84 mg/mL), while it found no cytotoxic against BG fibroblasts at the concentrations were it exerted whitening effect, reassuring its safety and great tyrosinase inhibitory potential.
The tectonic setting of western Peloponnese and central Ionian Islands, Greece, is characterized by the subduction of the oceanic African plate beneath the Aegean micro-plate. The transition from subduction to continental collision in northwestern Greece is accommodated by the right-lateral Cephalonia transform fault. In this work, we exploit the recordings of a temporary seismic network composed of 15 stations operating from July 2016 until May 2017 to investigate the complex deformation of this region. Our local network fills in a major observational gap in one of the most tectonically active regions of the Hellenic arc. We detected and located more than 1200 local earthquakes and constrained five 1D optimum local velocity models. The relocated seismicity (including the aftershock sequence that followed the October 2018 Mw 6.7 earthquake offshore Zakynthos) and associated focal mechanisms constrained for the major earthquakes point out a complex crustal deformation. We propose a clockwise rotation of the Ionian Akarnania Block accommodated by major marginal strike-slip fault zones that appear segmented along their strike. Additionally, left-lateral motion is observed on the Kyllini-Cephalonia fault along a north-west direction. Finally, the seismicity recorded in north Cephalonia (offshore Myrtos and Fiskardo) suggests that the Cephalonia transform fault is a large deformation zone where secondary WNW-striking sinistral strike-slip faults occur.
Due to early implementation of public health measures, Greece had low number of SARS-CoV-2 infections and COVID-19 severe incidents in hospitalized patients. The National and Kapodistrian University of Athens (ΝΚUA), especially its health-care/medical personnel, has been actively involved in the first line of state responses to COVID-19. To estimate the prevalence of antibodies (Igs) against SARS-CoV-2 among NKUA members, we designed a five consecutive monthly serosurvey among randomly selected NKUA consenting volunteers. Here, we present the results from the first 2500 plasma samples collected during June-July 2020. Twenty-five donors were tested positive for anti-SARS-CoV-2 Igs; thus, the overall seroprevalence was 1.00%. The weighted overall seroprevalence was 0.93% (95% CI: 0.27, 2.09) and varied between males [1.05% (95% CI: 0.18, 2.92)] and females [0.84% (95% CI: 0.13, 2.49)], age-groups and different categories (higher in participants from the School of Health Sciences and in scientific affiliates/faculty members/laboratory assistants), but no statistical differences were detected. Although focused on the specific population of NKUA members, our study shows that the prevalence of anti-SARS-CoV-2 Igs for the period June-July 2020 remained low and provides knowledge of public health importance for the NKUA members. Given that approximately one in three infections was asymptomatic, continuous monitoring of the progression of the pandemic by assessing Ig seroprevalence is needed.
Prevalence and symptoms of most psychiatric and neurological disorders differ in men and women and there is substantial evidence that their neurobiological basis and treatment also differ by sex. This special issue sought to bring together a series of empirical papers and targeted reviews to highlight the diverse impact of sex in neuroscience and neuropsychopharmacology. This special issue emphasizes the diverse impact of sex in neuroscience and neuropsychopharmacology, including 9 review papers and 17 research articles highlighting investigation in different species (zebrafish, mice, rats, and humans). Each contribution covers scientific topics that overlap with genetics, endocrinology, cognition, behavioral neuroscience, neurology, and pharmacology. Investigating the extent to which sex differences can impact the brain and behavior is key to moving forward in neuroscience research.
BACKGROUND & AIMS: The incidence of hepatocellular carcinoma (HCC) was recently reported to be lower in Asian chronic hepatitis B (CHB) patients treated with tenofovir disoproxil fumarate (TDF) than entecavir (ETV), but this finding remains controversial. We assessed whether there was a difference between ETV and TDF treated patients of the well monitored, multicenter European PAGE-B cohort in the HCC incidence and other patient outcomes. METHODS: We included 1935 Caucasians with CHB, with or without compensated cirrhosis, treated with ETV (n=772) or TDF (n=1163) monotherapy. Mean follow-up has been 7.1+/-3.0 years from ETV/TDF onset. RESULTS: The 5-year cumulative HCC incidence was 5.4% in ETV and 6.0% in TDF treated patients (log-rank, P=0.321) without significant difference in any patient subgroup [with or without cirrhosis, naive or experienced to oral antiviral(s) (total, with or without cirrhosis)]. In multivariable Cox regression analyses, the hazard of HCC was similar between ETV and TDF treated patients after adjustment for several HCC risk factors. ETV and TDF treated patients had similar rates of on-therapy biochemical and virological remission, HBsAg loss, liver transplantation and/or death. Elastographic reversion of cirrhosis at year 5 (liver stiffness <12 kPa) was observed in 245/347 (70.6%) patients with pretreatment cirrhosis being more frequent in TDF than ETV treated patients (73.8% vs 61.5%, P=0.038). CONCLUSION: In Caucasian CHB patients, with or without cirrhosis, ETV and TDF long-term monotherapy is associated with similar HCC risk and rates of biochemical and virological remission, HBsAg loss and liver transplantation or death, but TDF seems to result in more frequent elastographic reversion of cirrhosis at year 5.
In the interconfessional theological dialogue between the Orthodox and the Roman-Catholic Church, there has been much discussion about the famous passage 16:16–19 of Matthew’s Gospel. However, not much attention has been paid to the testimonies of other New Testament books about the Apostle Peter’s person, work, and historical impact. This paper examines the narrative character of Simon Peter in John’s Gospel to contribute to a more comprehensive understanding of the great apostle’s historical significance in early Christianity. In our analysis, we make use of the narrative-critical method focusing on the comparison between Simon Peter and the Beloved Disciple. This approach opens a window to how the Johannine community evaluated Peter’s person and significance at the time of the composition of the Fourth Gospel, and, thus, helps us better understand the biblical foundations of the theological debate on the papal office.
Using the core-EP inverse, we obtain the unique solution to the constrained matrix minimization problem in the Euclidean norm: $$\mathrm{Minimize }\ \Vert Mx-b\Vert _2$$Minimize‖Mx-b‖2, subject to the constraint $$x\in \mathcal{R}(M^k),$$x∈R(Mk),where $$M\in {\mathbb {C}}^{n\times n}$$M∈Cn×n, $$k=\mathrm {Ind}(M)$$k=Ind(M)and $$b\in {\mathbb {C}}^n$$b∈Cn. This problem reduces to well-known results for complex matrices of index one and for nonsingular complex matrices. We present two kinds of Cramer’s rules for finding unique solution to the above mentioned problem, applying one well-known expression and one new expression for core-EP inverse. Also, we consider a corresponding constrained matrix approximation problem and its Cramer’s rules based on the W-weighted core-EP inverse. Numerical comparison with classical strategies for solving the least squares problems with linear equality constraints is presented. Particular cases of the considered constrained optimization problem are considered as well as application in solving constrained matrix equations.
In ELT contexts, the concept of ELF awareness has been proposed as a means of developing the skills, strategies, and overall outlook that learners require to competently participate in ELF interactions. Depending on the teaching context, this can be a demanding process. We discuss the ELF-aware instructional interventions carried out by two practitioners working in high-stakes exam preparation contexts in Greece. These contexts are predominantly Standard English oriented. The interventions described an attempt to put into practice the principles of ELF-aware pedagogy, namely awareness of language and language use, awareness of instructional practice, and awareness of learning. The innovative aspect of these interventions is that they do not run contrary to the curriculum of these high-stakes exam preparation classes. On the contrary, they complement the courseware used in these contexts with authentic audiovisual materials and original metalinguistic activities that boost learners’ self-confidence as ELF speakers and as candidates of these exams.
The purpose of this paper is to present a new method for early detection of forest fires, especially in forest zones prone to fires using microwave remote sensing and information-modeling tools. A decision-making system is developed as a tool for operational coupled analysis of modeling results and remote sensing data. The main operating structure of this system has blocks that calculate the moisture of forest canopy, the soil-litter layer, and the forest physical temperature using the observed brightness temperature provided by the flying platform IL-18 equipped with passive microwave radiometers of 1.43, 13.3 and 37.5 GHz frequencies. The hydrological parameters of the forest are assessed with both a developed regional hydrological model and remote sensing observations. The hydrological model allows for the detection of fire-prone zones that are subject to remote sensing when modeling results are corrected and thermal temperatures are evaluated. An approach for the real time forest fires classification via daytime remote sensing observations is proposed. The relative theoretical and experimental results presented here have allowed us to use a new approach to forests monitoring during periods of potential fire. A decision-making algorithm is presented that aims at analyzing data flows from radiometers located on the remote sensing platform to calculate the probability of forest fire occurring in geographical pixels. As case study, the state of forest fires that occurred in Siberia in 2019 using microwave remote sensing measurements conducted by a flying IL-18 laboratory is presented. This remote sensing platform is equipped with optical and microwave tools that allow the optical and microwave images of the observed forest areas. The main operating frequencies of microwave radiometers are 1.43, 13.3 and 37.5 GHz. Microwave radiometers provide data on water content in the forest canopy and on litter and physical temperatures. Based on the long-term measurements made in Siberia, the possible improvement of the proposed decision-making system for future relevant studies is discussed in detail. The basic idea of cost-effective monitoring of forested areas consists of a two-stage exploration of fire risk zones. The first monitoring stage is performed using the hydrological model of the study area to identify low moisture areas of the forest canopy and litter. The second stage of monitoring is conducted using the remote sensing platform only in the local fire-dangerous areas in order to more precisely identify the areas prone to fire and to detect and diagnose real burning zones. The developed algorithm allows the calculation of physical temperatures and the detection of temperature anomalies based on measured brightness temperatures. Finally, the spatial distribution of the probability of forest fire occurrence is given as an example of the decision-making system along with a comparison of this distribution with the satellite images provided by the EOSDIS Land data.
Ο Λεωνίδας Αρνιώτης, γεννημένος το 1862 στην Σπάρτη Λακωνίας, υπήρξε εξέχουσα προσωπικότητα, καλλιτέχνης των παραστατικών τεχνών του τέλους του 19ου και των αρχών του 20ου αι. με εθνική αλλά κυρίως διεθνή παρουσία. Στο άρθρο περιγράφεται η άγνωστη καλλιτεχνική πορεία του Λεωνίδα Αρνιώτη στις Η.Π.Α. αλλά και σε μεγάλες ευρωπαϊκές πρωτεύουσες: Παρίσι, Λονδίνο, Ρώμη, Βερολίνο, Βρυξέλλες κα. Ο Αρνιώτης υπήρξε ιπποδαμαστής, jockey, ακροβάτης επί ίππου, πυγμάχος, πυγμάχος επί ίππου, θιασάρχης, θεατρώνης, στιχουργός, συγγραφέας επιθεωρήσεων, θεατρικών έργων, επιστημονικών μελετών, πιλότος αεροπλάνων αλλά κυρίως ένας από τους διασημότερους εκπαιδευτές ζώων παγκοσμίως. Στα τέλη του 19ου αι. συνοδευόμενος από τη σύζυγό του Μαίρη και τον πολυάρθμο θίασο τετραπόδων σκύλων και γάτων πραγματοποίησε διετή περιοδεία στις Η.Π.Α. και υπήρξε ο πρώτος Έλληνας καλλιτέχνης στην άλλη πλευρά του Ατλαντικού με σταθερή και εκτεταμένη παρουσία. Εμπνευστής αλλαγών, με πολυδύναμες και διαισθητικές ικανότητες, εξέφρασε με ενάργεια το πνεύμα της εποχής, της μετάβασης από το 19ο στον 20ο αι. και αποτέλεσε καθοριστική προσωπικότητα σε σχέση με την εισαγωγή παγκόσμιων παραστατικών τάσεων στην αθηναϊκή σκηνή.
Introduction. In volleyball, setting is a critical skill from a technical and tactical point of view, as it affects attack directly: the better the quality of the setter’s performance, the more excellent attack actions are carried out by men and women attackers. Aim of Study. This study aimed to assess the spatial and temporal characteristics of the setting choices made by junior male volleyball setters and their performance concerning the game complex per match rotation. Material and Methods. A three-member group of experienced coaches assessed the setting zones choices, the setting tempo, and the performance of junior male setters from 20 volleyball games of teams competing in the final phase of the 2016 Greek Junior Championship. A five-level ordinal scale was used to evaluate the setting. The test of independence for the categorical variables was carried out using the chi-square test (χ2 ). Following the overall independence test, the difference in proportions among all levels of variables was tested. Results. Results showed that zone 4 was the junior setters’ first choice irrespective of the game complex. More detailed, in Complex II, the most preferable setting zones were 4 and 6, while zone 3 was the primary selection in Complex I. The setting in the first tempo was the most favorite option in Complex I, although second slow tempo was the most frequently used setting option in Complex II. As for the quality of the setting, the dominant value for both complexes was quality level 2. Conclusions. In conclusion, the junior male setters directed the ball mainly to position 4 by using the slow 2nd tempo settings irrespective of the game rotation. Moreover, they showed a higher proportion of excellent setting actions and used fast settings (first tempo) more frequently in Complex I than in Complex II. KEYWORDS:
Between May 2017 and November 2018, Greece has experienced a severe measles outbreak with a total of 3258 cases reported, after reaching its goal of eliminating measles since 2014-2015. In this study, we aimed to investigate the origin and the dispersal patterns of the measles strains that circulated in Greece during this outbreak and to identify possible transmission patterns of measles virus (MeV) in the country. Of the 832 measles suspect cases referred to the National Measles and Rubella Reference Laboratory for MeV RNA detection, 131 randomly selected positive samples, representative of the temporal and spatial distribution of the laboratory-confirmed measles cases in Greece, were processed for genotypic identification by an RT-PCR amplification of a 598 bp fragment containing the 450 bp hypervariable region of the measles virus N gene. Phylogenetic analysis was carried out by the approximate maximum likelihood method (ML) under the generalized time-reversible (GTR + cat) model. All samples analyzed were found to belong to genotype B3. Comparative analysis with other European and reference measles strains revealed three separate major clusters and other multiple viruses circulating simultaneously in Greece. They were all isolated from three main community groups, Greek-Roma children, non-minority Greek nationals and immigrants/refugees, a finding that is in accordance with what was also observed in the last two measles outbreaks in 2005-2006 and 2010-2011. Notably, for one of the three clusters, no similarity was detected with previously reported prototype strains. Our results indicate the need for a more intensive vaccination program against measles amongst minority populations and in refugee hot-spots as well as the importance of molecular surveillance as a tool for monitoring measles outbreaks.
We report a thorough theoretical investigation of magnon-assisted photon transitions in magnetic garnet micron-sized spheres, which operate as optomagnonic resonators. In this case, matching the intraband splitting of optical Mie modes, induced by particle magnetization, to the eigenfrequency of the uniform-precession spin wave, high-efficiency triply resonant optical transitions between these modes, through respective emission or absorption of a cavity magnon, are enabled. By means of rigorous full electrodynamic computations, supported by corresponding approximate analytical calculations, we provide compelling evidence of greatly increased optomagnonic interaction, compared to that in similar processes between whispering gallery modes of corresponding submillimeter spheres, due to the reduced magnon mode volume. We explain the underlying mechanisms to a degree that goes beyond existing interpretation, invoking group theory to derive general selection rules and highlighting the role of the photon spin as the key property for maximizing the respective coupling strength.
Binary black hole (BH) central engine description for the unique blazar OJ 287 predicted that the next secondary BH impact-induced bremsstrahlung flare should peak on 2019 July 31. This prediction was based on detailed general relativistic modeling of the secondary BH trajectory around the primary BH and its accretion disk. The expected flare was termed the Eddington flare to commemorate the centennial celebrations of now-famous solar eclipse observations to test general relativity by Sir Arthur Eddington. We analyze the multi-epoch Spitzer observations of the expected flare between 2019 July 31 and 2019 September 6, as well as baseline observations during 2019 February-March. Observed Spitzer flux density variations during the predicted outburst time display a strong similarity with the observed optical pericenter flare from OJ 287 during 2007 September. The predicted flare appears comparable to the 2007 flare after subtracting the expected higher base-level Spitzer flux densities at 3.55 and 4.49 μm compared to the optical R-band. Comparing the 2019 and 2007 outburst lightcurves and the previously calculated predictions, we find that the Eddington flare arrived within 4 hr of the predicted time. Our Spitzer observations are well consistent with the presence of a nano-Hertz gravitational-wave emitting spinning massive binary BH that inspirals along a general relativistic eccentric orbit in OJ 287. These multi-epoch Spitzer observations provide a parametric constraint on the celebrated BH no-hair theorem.
In the course of the first all-sky survey (eRASS1), the eROSITA instrument on board the Russian/German Spektrum-Roentgen-Gamma (SRG) mission started scanning the Small Magellanic Cloud (SMC).
In the course of the first all-sky survey (eRASS1), the eROSITA instrument on board the Russian/German Spektrum-Roentgen-Gamma (SRG) mission discovered a strong outburst from RX J0529.8-6556 in the Large Magellanic Cloud (LMC).
We investigate the spin-orbit torque exerted on the magnetic moments of the transition-metal impurities Cr, Mn, Fe, and Co, embedded in the surface of the topological insulator Bi2Te3, in response to an electric field and a consequent electrical current flow in the surface. The multiple scattering problem of electrons off impurity atoms is solved by first-principles calculations within the full-potential relativistic Korringa-Kohn-Rostoker (KKR) Green function method, while the spin-orbit torque calculations are carried out by combining the KKR method with the semiclassical Boltzmann transport equation. We analyze the correlation of the spin-orbit torque to the spin accumulation and spin flux in the impurities and unveil the effect of resonant scattering. In addition, we relate the torque to the resistivity and Joule heat production. We predict that the Mn/Bi2Te3 is optimal among the studied systems.
Παρουσίαση της Ημερίδας «Νέες Τεχνολογίες τροποποίησης του γονιδιώματος: Βιοηθικά Ζητήματα», Σπίτι της Κύπρου, Πρεσβεία της Κυπριακής Δημοκρατίας στην Αθήνα, 21.2.2020.https://spititiskyprou.gr/wp-content/uploads/2020/02/prosklisi-21-feb-2020-esperida-nees-technologies.pdf
Insulin-regulated aminopeptidase (IRAP) is a transmembrane zinc metallopeptidase with many important biological functions and an emerging pharmacological target. Although previous structural studies have given insight on how IRAP recognizes linear peptides, how it recognizes its physiological cyclic ligands remains elusive. Here, we report the first crystal structure of IRAP with the macrocyclic peptide inhibitor HA08 that combines structural elements from angiotensin IV and the physiological substrates oxytocin and vasopressin. The compound is found in the catalytic site in a near canonical substrate-like configuration and inhibits by a competitive mechanism. Comparison with previously solved structures of IRAP along with small-angle X-ray scattering experiments suggests that IRAP is in an open conformation in solution but undergoes a closing conformational change upon inhibitor binding. Stabilization of the closed conformation in combination with catalytic water exclusion by the tightly juxtaposed GAMEN loop is proposed as a mechanism of inhibition.
Previous research has shown that utility value and expectancy forsuccess, as well as the reasons for academic striving, could partlyexplain academic engagement. Yet, their joint role in predictinglearning strategies and test anxiety has not been thoroughlyunderstood, especially in contexts where pressure for success ishigh. We examined this issue in a sample of Turkish universitystudents who were attending a language preparatory school(N¼1009; 53% males,Mage¼19.14years;SD¼1.08) and wereunder the psychological pressure to pass their qualifying exams.Regression analyses showed that next to self-efficacy beliefs, itwas intrinsic reasons which positively and consistently predictedlearning strategies; in contrast, self-worth concerns positively pre-dicted test anxiety. These relations emerged even among stu-dents who experienced failure and were thus psychologicallypressed to succeed. Our findings suggest that intrinsic reasons foracademic striving might play a decisive role even in psychologic-ally pressuring contexts
The Be X-ray binary pulsar 1A 0535+262 has recently been observed in outburst with Swift/BAT and MAXI (ATel #14157, #14173). Since then the pulsar has been rapidly evolving in X-rays.
Dysregulation of glycogen phosphorylase, an enzyme involved in glucose homeostasis, may lead to a number of pathological states such as type 2 diabetes and cancer, making it an important molecular target for the development of new forms of pharmaceutical intervention. Based on our previous work on the design and synthesis of 4-arylamino-1-(β-d-glucopyranosyl)pyrimidin-2-ones, which inhibit the activity of glycogen phosphorylase by binding at its catalytic site, we report herein a general synthesis of 2-substituted-5-(β-d-glucopyranosyl)pyrimidin-4-ones, a related class of metabolically stable, C-glucosyl-based, analogues. The synthetic development consists of a metallated heterocycle, produced from 5-bromo-2-methylthiouracil, in addition to protected d-gluconolactone, followed by organosilane reduction. The methylthio handle allowed derivatization through hydrolysis, ammonolysis and arylamine substitution, and the new compounds were found to be potent (μM) inhibitors of rabbit muscle glycogen phosphorylase. The results were interpreted with the help of density functional theory calculations and conformational analysis and were compared with previous findings.
The core aim of the current paper is to summarize the basic argumentation of the Waltzian program and re-examine it in comparison with the legacy of systemic geopolitics. Which is Waltz’s contribution, what is added by Mearsheimer and what does systemic geopolitical analysis offer in the margins of the relevant debate? Both of them focus on Great Powers, since these are considered without any doubt rational actors shaping international system. On this line of thought, their specific legacy is comparatively analyzed with systemic geopolitics and it is developed on the common basis of “system”. Systemic analysis is their common starting point towards analysis of international affairs and interstate distribution of power. Beyond their contradiction with reference to conclusions and epistemological issues, systemic analysis offers a common framework of understanding and conceptualizing systemic geopolitical analysis and structural realism. For this reason, system-level parameters are considered critical representing an epistemological and methodological prioritization far from blinkered analyses cited by other theoretical and philosophical traditions.
Mesogiti I, Theodoropoulou E, Lyberopoulos G, Setaki F, Filis K, Di Giglio A, Percelsi A, Tzanakaki A. Techno-Economic Aspects of 5G Transport Network Deployments. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [Internet]. 2020;11616 LNCS:118-129. Website
The existence of magnetic activity on the eclipsing binary DV Psc has been known for almost two decades. However, until recently, no evidence of periodic behaviour relevant to this activity had been found. In this study, long-term photometric observations of DV Psc are used to analyze the system's magnetic activity, seek a possible magnetic cycle and determine orbital and physical parameters. The combination of photometric and spectroscopic observations results in a unified model that describes the system over time in terms of variable spot activity. New times of minimum light are determined and an accurate astronomical ephemeris and updated O-C diagram are constructed for a total span of 19 years (1997-2017). The intense magnetic activity, as indicated by strong asymmetries in the light curves (O' Connell effect), and the periodic variation of the O-C diagram are combined to explain the system's behaviour. The existence of a third body, orbiting the eclipsing binary in an eccentric orbit, as well as a magnetic cycle are the most likely scenario.
{The purpose of this study was to investigate the areas from which the serves performed by elite volleyball players were carried out, the zones into where they were directed and their performance in respect to the serve type used per gender. A three-member group of coaches assessed the serve actions of male (M) and female (F) elite players from 20 volleyball games (M=10
Human brain possesses a unique anatomy and physiology. For centuries, methodological barriers and ethical challenges in accessing human brain tissues have restricted researchers into using 2-D cell culture systems and model organisms as a tool for investigating the mechanisms underlying neurological disorders in humans. However, our understanding regarding the human brain development and diseases has been recently extended due to the generation of 3D brain organoids, grown from human stem cells or induced pluripotent stem cells (iPSCs). This system evolved into an attractive model of brain diseases as it recapitulates to a great extend the cellular organization and the microenvironment of a human brain. This chapter focuses on the application of brain organoids in modelling several neurodevelopmental and neurodegenerative diseases.
This study examined the role of parents’ reminiscing style in preschoolers’ memory-related functioning and general emotion regulation. In 87 families, each parent rated their child’s (Mage = 4.07 years, SD = 0.80) emotion regulation and discussed a positive and a negative memory with their child (resulting in 275 conversations). Multilevel analyses showed that children’s rated engagement during the conversation was higher when parents were observed to use autonomy-supportive, elaborative, and positive evaluative reminiscing, while children’s rated disaffection was predicted by low autonomy support, low elaboration, and negative evaluation. Parental positive evaluation also related positively to children’s memory performance. With respect to emotion regulation, only parents’ negative evaluation when talking about negative memories related to higher emotional lability. (PsycInfo Database Record (c) 2020 APA, all rights reserved)
Mediterranean mountain ecosystems have been attractive to human societies due to their valuable resources, but are also susceptible to environmental and climate changes. The Rhodope Mountain Range hosts one of the least disturbed natural forests of Europe and is a conservation priority area in the Southern Balkans. Located in the borderlands of the plain of Macedonia, the forest ecosystem development of Rhodope Mountains was shaped not only by Late Holocene climatic variability, but also by changes in human activities since Byzantine times. Palynological and microscopic charcoal analysis of the Livaditis ombrotrophic bog record offers unique insights into vegetation and landscape evolution under the influence of human land-use practices in the south Rhodope area during the last c.a. 1100 years. The findings show a forested landscape, with well-developed Pinus and Abies forests of in the montane zone and mixed deciduous oak forests below that flourished in the area until 900 AD. The expansion of human activity in mountainous areas during the period of Byzantine economic growth (ca. 1000 AD) is evidenced by forest clearance through fire, affecting mainly the Abies populations. The Livaditis record bears evidence about both, arboriculture and cereal cultivation as well as animal husbandry during the first period of human activities in the uplands, while a shift towards pastoralism is most likely associated with the establishment of the Vlach population in the region (ca. 1200 AD). Subsequently, a short-lived expansion of the Pinus percentages could be attributed to the afforestation of abandoned pasture land during the Little Ice Age. Finally, a further intensification of pastoralism is most likely concurrent with the population expansion documented during the Ottoman period (after 1500 AD). The Livaditis pollen record shows significant vegetation shifts in the upland area of southern Rhodope Mountains that could be associated with changes in climate, population mobility and density, as well as evolving land-use practices.
Background: Thyroid follicular cells have physiologically high levels of reactive oxygen species because oxidation of iodide is essential for the iodination of thyroglobulin (Tg) during thyroid hormone synthesis. Thyroid follicles (the functional units of the thyroid) also utilize incompletely understood autoregulatory mechanisms to defend against exposure to excess iodide. To date, no transcriptomic studies have investigated these phenomena in vivo. Nuclear erythroid factor 2 like 2 (Nrf2 or Nfe2l2) is a transcription factor that regulates the expression of numerous antioxidant and other cytoprotective genes. We showed previously that the Nrf2 pathway regulates the antioxidant defense of follicular cells, as well as Tg transcription and Tg iodination. We, thus, hypothesized that Nrf2 might be involved in the transcriptional response to iodide overload. Methods: C57BL6/J wild-type (WT) or Nrf2 knockout (KO) male mice were administered regular water or water supplemented with 0.05{%} sodium iodide for seven days. RNA from their thyroids was prepared for next-generation RNA sequencing (RNA-Seq). Gene expression changes were assessed and pathway analyses were performed on the sets of differentially expressed genes. Results: Analysis of differentially expressed messenger RNAs (mRNAs) indicated that iodide overload upregulates inflammatory-, immune-, fibrosis- and oxidative stress-related pathways, including the Nrf2 pathway. Nrf2 KO mice showed a more pronounced inflammatory–autoimmune transcriptional response to iodide than WT mice. Compared to previously published datasets, the response patterns observed in WT mice had strong similarities with the patterns typical of Graves' disease and papillary thyroid carcinoma (PTC). Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) also responded to iodide overload, with the latter targeting mRNAs that participate mainly in inflammation pathways. Conclusions: Iodide overload induces the Nrf2 cytoprotective response and upregulates inflammatory, immune, and fibrosis pathways similar to autoimmune hyperthyroidism (Graves' disease) and PTC.
Nutrient transporters, being polytopic membrane proteins, are believed, but not formally shown, to traffic from their site of synthesis, the ER, to the plasma membrane through Golgi-dependent vesicular trafficking. Here, we develop a novel genetic system to investigate the trafficking of a neosynthesized model transporter, the well-studied UapA purine transporter of Aspergillus nidulans. We show that sorting of neosynthesized UapA to the plasma membrane (PM) bypasses the Golgi and does not necessitate key Rab GTPases, AP adaptors, microtubules or endosomes. UapA PM localization is found to be dependent on functional COPII vesicles, actin polymerization, clathrin heavy chain and the PM t-SNARE SsoA. Actin polymerization proved to primarily affect COPII vesicle formation, whereas the essential role of ClaH seems indirect and less clear. We provide evidence that other evolutionary and functionally distinct transporters of A. nidulans also follow the herein identified Golgi-independent trafficking route of UapA. Importantly, our findings suggest that specific membrane cargoes drive the formation of distinct COPII subpopulations that bypass the Golgi to be sorted non-polarly to the PM, and thus serving house-keeping cell functions.
Monoamine oxidases MAOA and MAOB catalyze important cellular functions such as the deamination of neurotransmitters. Correspondingly, MAO inhibitors are used for the treatment of severe neuropsychiatric disorders such as depression. A commonly prescribed drug against refractory depression is tranylcypromine, however, the side effects are poorly understood. In order to decipher putative off-targets, we synthesized two tranylcypromine probes equipped with either an alkyne moiety or an alkyne-diazirine minimal photocrosslinker for in situ proteome profiling. Surprisingly, LC-MS/MS analysis revealed low enrichment of MAOA and relatively promiscuous labeling of proteins. Photoprobe labeling paired with fluorescent imaging studies revealed lysosomal trapping which could be largely reverted by the addition of lysosomotropic drugs.
The heterogeneity of bladder cancer (BlCa) prognosis and treatment outcome requires the elucidation of tumors' molecular background towards personalized patients' management. tRNA-derived fragments (tRFs), although originally considered as degradation debris, represent a novel class of powerful regulatory non-coding RNAs. In silico analysis of the TCGA-BLCA project highlighted 5'-tRF-LysCTT to be significantly deregulated in bladder tumors, and 5'-tRF-LysCTT levels were further quantified in our screening cohort of 230 BlCa patients. Recurrence and progression for non-muscle invasive (NMIBC) patients, as well as progression and patient's death for muscle-invasive (MIBC) patients, were used as clinical endpoint events. TCGA-BLCA were used as validation cohort. Bootstrap analysis was performed for internal validation and the clinical net benefit of 5'-tRF-LysCTT on disease prognosis was assessed by decision curve analysis. Elevated 5'-tRF-LysCTT was associated with unfavorable disease features, and significant higher risk for early progression (multivariate Cox: HR = 2.368; p = 0.033) and poor survival (multivariate Cox: HR = 2.151; p = 0.032) of NMIBC and MIBC patients, respectively. Multivariate models integrating 5'-tRF-LysCTT with disease established markers resulted in superior risk-stratification specificity and positive prediction of patients' progression. In conclusion, increased 5'-tRF-LysCTT levels were strongly associated with adverse disease outcome and improved BlCa patients' prognostication.
In this paper I discuss the possibilities, opportunities, challenges and (even) perils in applying the ELF-aware perspective in teacher education. I focus on presenting two obstacles in enabling this application, the first related to teachers’ attitudes, which tend to be fundamentally negative, and the second referring to an uncertainty about establishing, applying and evaluating appropriate ELF pedagogy. The obstacles are discussed with reference to examples from my personal experience as teacher educator, and argue (a) that these obstacles are also present in more “traditional” teaching and teacher education practices and (b) that they can be overcome if they are perceived as opportunities for integrating real-life interactions involving non-native English language users in the EFL classroom and prompting EFL teacher reflection and growth.
The purpose of this systematic review was to identify adolescents' awareness on the human papillomavirus (HPV), the HPV vaccine, and the willingness to undergo the vaccination. A systematic review of studies concerning the adolescent's knowledge and education on the admission of the HPV vaccine was carried out, through the Medline/PubMed and the Google Scholar databases, covering information on adolescent attitudes towards HPV vaccination, as well as their perceptions regarding the vaccination and the need for more training, towards the public information about the HPV and the HPV vaccine. This study concludes that adolescents are poorly informed about the HPV and the preventive vaccination issues, underestimating the likelihood of the infection by the virus. The way to improve their knowledge about the HPV and the implications of the HPV infection is to provide information through the framework of compulsory schooling, primary health care, and the development of informative interactive interventions. The awareness for the need of training about the HPV and its implications should be broadened to address the major barrier to vaccination, which is regarded to be the lack of adequate information. The knowledge and the perceptible susceptibility to the HPV infection and HPV-related diseases among adolescents demonstrate the need for a well-designed training program to bridge the gap of information about the HPV virus and to accept the HPV vaccine.
Using self-determination theory as a framework, we aimed to study the relationships between perceived need support and need satisfaction with self-determined motivation and extracurricular physical activity intentions in the physical education (PE) classroom, including sex and out-of-school sport participation as moderators. Additionally, we aimed to test whether a need-supportive classroom environment in PE moderates these associations. Participants were 1259 students (556 males) aged between 12 to 16 years (Mage = 13.46 years; SD = 0.74) from 77 PE classes. At the student level we found (a) need satisfaction to predict positively autonomous motivation and negatively amotivation, and (b) autonomous motivation to predict positively and amotivation to predict negatively intentions to undertake extracurricular physical activities. At the classroom level, in need-supportive classes males benefit more than females in terms of increased autonomous motivation while females benefit more than males in terms of decreased amotivation. Finally, class-level perceived need support moderated (i.e., attenuated) the negative association between need satisfaction and amotivation and between amotivation and intentions. These results suggest a buffering role that a need-supportive classroom environment may have on students’ motivation and behavior.
We present the results of the first dedicated observation of the young X-ray pulsar SXP 1062 in the broad X-ray energy band obtained during its 2019 outburst with the NuSTAR and XMM-Newton observatories. The analysis of the pulse-phase averaged and phase-resolved spectra in the energy band from 0.5 to 70 keV did not reveal any evidence for the presence of a cyclotron line. The spin period of the pulsar was found to have decreased to 979.48 ± 0.06 s implying a ∼10% reduction compared to the last measured period during the monitoring campaign conducted about five years ago, and is puzzling considering that the system apparently has not shown major outbursts ever since. The switch of the pulsar to the spin-up regime supports the common assumption that torques acting on the accreting neutron star are nearly balanced and thus SXP 1062 likely also spins with a period close to the equilibrium value for this system. The current monitoring of the source also revealed a sharp drop in its soft X-ray flux right after the outburst, which is in drastic contrast to the behavior during the previous outburst when the pulsar remained observable for years with only a minor flux decrease after the end of the outburst. This unexpected off state of the source lasted for at most 20 days after which SXP 1062 returned to the level observed during previous campaigns. We discuss this and other findings in context of the modern models of accretion onto strongly magnetized neutron stars.
The 1:1 reactions of uranium(iv) tetrakis(borohydride) with the sodium and potassium salts of the cyclobutadienyl anion [C4(SiMe3)4]2- (Cb′′′′) produce the half-sandwich complexes [Na(12-crown-4)2][U(η4-Cb′′′′)(BH4)3] and [U(η4-Cb′′′′)(μ-BH4)3{K(THF)2}]2. In the 1:2 reaction of U(BH4)4 with Na2Cb′′′′, formation of [U(η4-Cb′′′′)(η3-C4H(SiMe3)3-κ-(CH2SiMe2)(BH4))]- reveals that a Cb′′′′ ligand undergoes an intramolecular deprotonation, resulting in an allyl/tuck-in bonding mode. A computational study reveals that the uranium-Cb′′′′ bonding has an appreciable covalent component with contributions from the uranium 5f and 6d orbitals.
The paper presents the design, implementation and evaluation of a teaching intervention for the teaching of Evolution. This is carried out through an evolution-based investigation activity of the nervous system from Protozoan to Humans. Specifically, students were able to follow two main evolutionary pathways related to the Nervous system. In the first place, they were familiarized with a march of the Nervous System (NS) from Protozoans to Vertebrates and from Fishes to Humans. In a second stage they studied and compared the difference between the development of Spatial Memory and Hippocampus between polygamous mice and taxi drivers of NY city. I.e. they were faced with a case of adaptation in a Darwinian evolution way in contrast to a Lamarckian case of an acquired trait. The results of two studies concerning the increased size of the Hippocampus as a result of the impact of the environment and as an adaptive characteristic of reproductive and survival strategies are given to students who are invited to investigate whether this characteristic is inherited or not in the two cases. In addition to the main question, individual concepts of Evolution through Natural Selection and Neurobiology are explored. Teaching intervention is a proposal for the teaching of basic concepts of Evolution through the promotion of the idea of using the Evolution by Natural Selection as the Unifying Theory of Biology. The results show a statistically significant
The brain is one of the most complex organs, responsible for the advanced intellectual and cognitive ability of humans. Although primates are to some extent capable of performing cognitive tasks, their abilities are less evolved. One of the reasons for this is the vast differences in the brain of humans compared to other mammals, in terms of shape, size and complexity. Such differences make the study of human brain development fascinating. Interestingly, the cerebral cortex is by far the most complex brain region resulting from its selective evolution within mammals over millions of years. Unraveling the molecular and cellular mechanisms regulating brain development, as well as the evolutionary differences seen across species and the need to understand human brain disorders, are some of the reasons why scientists are interested in improving their current knowledge on human corticogenesis. Toward this end, several animal models including primates have been used, however, these models are limited in their extent to recapitulate human-specific features. Recent technological achievements in the field of stem cell research, which have enabled the generation of human models of corticogenesis, called brain or cerebral organoids, are of great importance. This review focuses on the main cellular and molecular features of human corticogenesis and the use of brain organoids to study it. We will discuss the key differences between cortical development in human and nonhuman mammals, the technological applications of brain organoids and the different aspects of cortical development in normal and pathological conditions, which can be modeled using brain organoids. This article is categorized under: Comparative Development and Evolution > Regulation of Organ Diversity Nervous System Development > Vertebrates: General Principles.
This paper reflects the opinion of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group Accreditation and ISO/CEN standards (WG-A/ISO). It aims to provide guidance for drawing up local/national documents about validation and verification of laboratory methods. We demonstrate how risk evaluation can be used to optimize laboratory policies to meet intended use requirements as well as requirements of standards. This is translated in a number of recommendations on how to introduce risk evaluation in various stages of the implementation of new methods ultimately covering the whole process cycle
The variability of the water mass exchange between the Arabian Gulf and the Indian Ocean is investigated using a high-resolution (1/36°) ocean model. We focus on the period from December 1996 to March 1998, having as reference in situ measurements at the Strait of Hormuz. Previous studies, based on models and observations, suggested a perpetual deep outflow, mainly in the southern part of the Strait, and a variable flow in the upper layers. In the present study, we confirm that there is a permanent core of a deep outflow in the Strait at depths greater than 40 m, characterised by high-salinity waters. In addition, we show that there is a seasonal signal in the upper layers net flow in the southern part of the Strait, altering from net inflow during winter/spring to net outflow during summer/fall. The mean annual inflow through the Strait is estimated at 0.22 ± 0.01 Sv and the deep outflow at 0.147 ± 0.01 Sv. The water mass exchange through the Strait is controlled by synoptic processes with high variability net transport fields. These processes characterise the structure and the intensity of the transport patterns, exhibiting 2- to 5-day period. On synoptic time scales, winds drive an immediate baroclinic flow at the Strait of Hormuz, affecting mostly the upper layers, and a quasi-barotropic flow that peaks approximately 2 days later.
Package recommendation systems have gained in popularity especially in the tourism domain, where they propose combinations of different types of attractions that can be visited by someone during a city tour. These systems can also be applied in suggesting home entertainment, proper nutrition or academic courses. Such systems must optimize multiple user criteria in tandem, such as preference score, package cost or duration. This work proposes a flexible framework for recommending packages that best fit users' preferences while satisfying several constraints on the set of the valid packages. This is achieved by modeling the relation between the items and the categories these items belong to, aiming at recommending to each user the top-k packages that cover their preferred categories and the restriction of a maximum package cost. Our contribution includes an optimal and a greedy algorithm, that both outperform a state-of-the-art system and a popularity-based baseline solution. The novelty of the optimal algorithm is that it combines the collaborative filtering predictions with a graph-based model to produce package recommendations. The problem is expressed through a minimum cost flow network and is solved by integer linear programming. The greedy algorithm has a low computational complexity and provides recommendations which are close to the optimal one. An extensive evaluation of the proposed framework has been carried out on six popular recommendation datasets. The results obtained using a set of widely accepted metrics show promising performance. Finally, the formulation of the problem for specific domains has also been addressed.
Nutritional and lifestyle changes remain at the core of healthy aging and disease prevention. Accumulating evidence underscores the impact of genetic, metabolic, and host gut microbial factors on individual responses to nutrients, paving the way for the stratification of nutritional guidelines. However, technological advances that incorporate biological, nutritional, lifestyle, and health data at an unprecedented scale and depth conceptualize a future where preventative dietary interventions will exceed stratification and will be highly individualized. We herein discuss how genetic information combined with longitudinal metabolomic, immune, behavioral, and gut microbial parameters, and bioclinical variables could define a digital replica of oneself, a "virtual digital twin," which could serve to guide nutrition in a personalized manner. Such a model may revolutionize the management of obesity and its comorbidities, and provide a pillar for healthy aging.
The discovery and analysis of the system CzeV1731 represents a rare configuration of a 2+2 quadruple star system containing two eclipsing binaries, the third system of its kind known to date. The system under investigation in this work is TYC 3929-724-1 (= 2MASS J19245582+5704084 = TIC 284482112), located at RA=19:24:55.82, DE=+57:04:08.39, with Vmax=10.5mag. We present times of eclipses and radial velocities of both pairs. (2 data files).
Figure10.4-0.7keV.fits and Figure10.7-1.25keV XMM-Newton mosaic images of M 31 in the 0.4-0.7keV and 0.7-1.25keV range. We used all XMM-Newton data up to and including our new observations (early 2016). To produce these mosaics we used the the XMM-Newton Extended Source Analysis Software (XMM-ESAS), packaged in SAS1 15.0.0. XMM-ESAS is based on the software used for the background modelling described by Snowden et al. (2004ApJ...610.1182S). The units of the images are cts/s/deg2. See Section 2.1.1 for more details. Figure2_0.4-1.25keV.fits. XMM-Newton image of the northern disk of M 31 in the 0.4-1.25keV range produced as in Figure 1. See Sections 2.1.1 and 2.2 for more details. (2 data files).
Table 1 includes the data from the astrometric monitoring runs for 2002 TC302 carried out to narrow down the shadow path uncertainty, in October, November, December 2017 and January 2018 with the Sierra Nevada 1.5m telescope (Granada, Spain) and the Calar Alto 1.2m telescope (Almeria, Spain). The astrometric catalog used for the occultation prediction was Gaia DR1. Tables 2 and 3 include, respectively, all the photometry and astrometry of 2002 TC302 analyzed, from 2014 to 2019. The astrometry was derived with respect to the Gaia DR2 catalog (Cat. I/345). (3 data files).
Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). (1 data file).
The COVID-19 pandemic has unhinged the lives of employees across the globe, yet there is little understanding of how COVID-19 health anxiety (CovH anxiety)-that is, feelings of fear and apprehension about having or contracting COVID-19-impacts critical work, home, and health outcomes. In the current study, we integrate transactional stress theory (Lazarus {&} Folkman, 1984) with selfdetermination theory (Deci {&} Ryan, 2000) to advance and test a model predicting that CovH anxiety prompts individuals to suppress emotions, which has detrimental implications for their psychological need fulfillment. In turn, lack of psychological need fulfillment hinders employees' abilities to work effectively, engage with their family, and experience heightened well-being. Our model further predicts that handwashing frequency-a form of problem-focused coping-will mitigate the effects of CovH anxiety. We test our propositions using a longitudinal design that followed 503 employees across the first four weeks that stay-at-home and social distancing orders were enacted. Consistent with predictions, CovH anxiety was found to impair critical work (goal progress), home (family engagement) and health (somatic complaints) outcomes due to increased emotion suppression and lack of psychological need fulfillment. Further, individuals who frequently engage in handwashing behavior were buffered from the negative impact of CovH anxiety. Combined, our work integrates and extends existing theory and has a number of important practical implications. Our research represents a first step to understanding the work-, home-, and health-related implications of this unprecedented situation, highlighting the detrimental impact of the anxiety stemming from the COVID-19 pandemic.