2020
Evelpidou N, Karkani A, Komi A, Giannikopoulou K, Tzouxanioti M, Saitis G, Gatou M-A.
Interactive virtual fieldtrip as a tool for remote education. In: AGU Fall Meeting (online). ; 2020.
Evelpidou N, Tzouxanioti M, Saitis G, Karkani A.
Geographic Information Systems - an interactive cartographic tool in education. In: Epistemology of STEM: Definitives and Pespectives. Athens; 2020.
Evelpidou N, Pontikou D, Komi A, Saitis G, Giannikopoulou K, Gatou M-A, Petropoulos A.
Geoscience education throughenvironmental ICT storytelling in primaryeducation across Europe
Abstract. European Geologist. 2020;50:29-33.
Raising awareness for sustainable development and environmental consciousness is an alternative teaching approach of geosciences in primary education. Through our methodology this is achieved by strengthening teachers' profile to effectively coach students to work on several environmental issues. By creating a teacher’s guideline handbook, in accordance with the educational targets and regulations of EU countries, teachers acquire a fresh perspective on teaching environmental sciences. They also gain scientific knowledge in five educational topics through the implementation of five mini-projects. An e-book enriched with the pupils’ digitalised environmental stories was designed to attract students and motivate them to engage environmental issues. The final product acts as a triggering factor for the much-needed environmental awareness of pupils around Europe.
Evelpidou N, Zerefos C, Synolakis C, Repapis C, Karkani A, Polidorou M, Saitis G.
Coastal Boulders on the SE Coasts of Cyprus as Evidence of Palaeotsunami Events. Journal of Marine Science and Engineering. 2020;8:812.
AbstractCyprus has a long history of tsunami events, as noted by archaeological and geological records. At Cape Greco (southeastern Cyprus) large boulders have been noted, however, no detailed geomorphological research has taken place so far and the related high energy event was undated until now. Our research aims to record in detail and interpret these large boulders deposits. The boulders, located between ≈3 and 4.5 m a.m.s.l., are fragments of an upper Pleistocene aeolianite, which is overlaying unconformly a lower Pleistocene calcarenite. Dimensions and spatial distribution of 272 small, medium, and large boulders were documented, while their precise distance from the coastline was recorded by field mapping and remote sensing, using Differential GPS (DGPS), drone, and Geographic Information Systems (GIS) technics. Field data were subsequently combined with hydrodynamic equations, in order to determine the extreme event(s) that caused their transport inland, and radiocarbon dating was accomplished on three samples of Vermetus sp. to determine the chronological context. Our findings appear to broadly correlate with the 1303 AD tsunami, which has displaced at least part of the studied boulders, and one other undocumented event at AD 1512-1824. The large number of boulders and sizes in our study area further indicate that their dislocation is most likely owed to multiple events from various sources.
Thivaiou D, Koskeridou E, Psarras C, Michalopoulou K, Evelpidou N, Saitis G, Lyras G.
Lake Lerna: investigating Hercules' ancient myth. In: EGU2020. ; 2020.
AbstractGreece and the Aegean area are among the first areas in Europe to have been occupied by humans. The record of human interventions in natural environments is thus particularly rich. Some of the interventions of the people inhabiting various localities of the country have been recorded in local mythology. Through the interdisciplinary field of geomythology it is possible to attempt to uncover the relationships between the geological history of early civilizations and ancient myths.In the present work, we focused on the history of Lake Lerni in the Eastern Peloponnese, an area that is better known through the myth of Hercules and the Lernaean Hydra. The area of the lake – now dried and cultivated – was part of a karstic system and constituted a marshland that was a source of diseases and needed to be dried.A new core is studied from the area of modern-day Lerni using palaeontological methods in order to reconstruct environmental changes that occurred during the last 6.000 years approximately. The area is known to have gone from marsh-lacustrine environments to dryer environments after human intervention or the intervention of Hercules according to mythology. Levels of peat considered to represent humid intervals were dated using the radiocarbon method so as to have an age model of the core. Samples of sediment were taken every 10 cm; the grain size was analysed for each sample as well as the fossil content for the environmental reconstruction.The presence of numerous freshwater gastropods reflects the intervals of lacustrine environment accompanied with extremely fine dark sediment. Sedimentology is stable throughout the core with few levels of coarse sand/fine gravel, only changes in colour hint to multiple levels richer in organic material.
Al Imran M, Nakashima K, Evelpidou N, Kawasaki S.
Innovative approach for addressing coastal erosion protection using microbial induced carbonate precipitation. In: EGU2020. ; 2020.
AbstractConsidering the global climate change and the ensuing sea level rise, the subsequent acceleration of coastal erosion is evident. Phenomena of coastal erosion, coastal flooding and shoreline retreat are expected to show a significant increase in frequency and intensity, in global level. The effects of coastal erosion are worsened by storms, and the reduction of sediment supply associated with global warming and anthropogenic modification of rivers and coastlines. As a countermeasure to coastal erosion, this work focuses on the development of coastal artificial in-situ rocks. We developed a new method that encompasses microbes and the related mechanism is called “Microbial Induced Carbonate Precipitation” (MICP). We successfully isolated three microorganisms, Micrococcus sp., Pseudoalteromonas sp., and Virgibacillus sp., from the selected area, and investigated their effectiveness in order to make a solidified sand sample. The precipitated bounding material has also been confirmed as calcite by XRD and XRF analysis. We successfully demonstrated that all of these bacterial species are very sensitive with certain environmental parameters, such as temperature, pH, culture type, culture duration, etc. In laboratory scale, we successfully obtained solidified sand by syringe (d = 2.3 cm, h = 7.1 cm) solidification method bearing UCS (Unconfined Compressive Strength) up to 1.8 MPa using 0.5 M CaCl2 and urea as cementation solution at 30°C. In addition, we propose a new sustainable approach for field implementation of this method through a combination of geotube and MICP mechanism, which will contribute to coastal erosion protection. The proposed approach is more economic, energy-saving, eco-friendly, and sustainable for bio-mediated soil improvement.
Xanthakis M, Pavlopoulos K, Kapsimalis V, Apostolopoulos G, Xanthopoulos G, Stefanidis P, Evelpidou N.
Prediction of soil loss in a reservoir watershed using an erosion model and modern technological tools: a case study of Marathon Lake, Attica in Greece. Environmental Science Proceedings. 2020;2:63.
AbstractMarathon Lake is an artificial reservoir with great environmental, ecological, social, and economic significance because it was the main source of water for Athens, the capital of Greece, for many years. The present study details the first attempt to map sedimentation in Marathon Lake in detail, using bathymetric mapping and soil erosion field surveying of the torrent watershed areas. First, the results of a bathymetric survey carried out in 2011 were compared with topographic maps that pre-date the construction of the dam. Based on this comparison, an estimated 8.34 hm3 of sediment have been deposited in the 80 years since the dam’s construction. In the current survey, the Revised Universal Soil Loss Equation (RUSLE) was used to estimate soil loss in the watershed area of the streams that end in Marathon Lake. The estimated value from the RUSLE was substantially lower (3.02 hm3) than that calculated in the bathymetric survey.
Evelpidou N, C. Z, Synolakis C, C. R, Karkani A, Polidorou M, Saitis G.
Boulder deposits on the southeastern coast of Cyprus and their relation with palaeotsunami events on the Eastern Mediterranean. In: EGU2020. Vienna; 2020.
AbstractCyprus has a long record of tsunami waves, as noted by archaeological and geological records. Large boulder deposits have been noted in the southeastern and western part of the Island. At Cape Greco (southeastern Cyprus) large boulders have been noted, however, no detailed geomorphological research has taken place so far and the related high energy event remains undated. Our research focuses at Cape Greco Peninsula in order to record in detail and interpret the large boulders deposits. The boulders, located at 3 m amsl, are fragments of a layer of an upper Pleistocene aeolianite, which is overlaying unconformly a lower Pleistocene calcarenite. Dimensions and spatial distribution of 272 small, medium and large boulders were documented, while their precise distance from the coastline was recorded by field mapping and remote sensing, using GNSS, drone and GIS technics. Several large boulders weighting more than ~30 metric tons were found up to 60m inland. Geomorphologic mapping and morphometric measurements, along with the presence of marine organisms suggests that some of the boulders were removed from their original intertidal zone and were transported inland by the force of large waves. In this work, we attempt to determine the extreme event that caused their transport inland. We further attempt a correlation of the event with already known tsunami events from Eastern Mediterranean, based on the estimated wave heights and the radiocarbon dating of marine gastropods (Vermetus sp.).