Publications by Year: 2009

Journal Article
Kynigos, C., & Psycharis, G. (2009). Investigating the role of context in experimental research involving the use of digital media for the learning of mathematics: Boundary objects as vehicles for integration. International Journal of Computers for Mathematical Learning, 14(3), 265-298. Article URLAbstract
The paper describes a study of the contexts of six teams, expert in research and development of digital media for learning mathematics, who cross-experimented in classrooms with the use of each other’s artefacts. Contextual issues regarding the designed tasks and technologies, the socio-systemic milieu and the ways in which the researchers worked with the teachers were in focus. We analysed the ways in which a set of mutually constructed and negotiated questions aiming to illuminate otherwise tacit contextual issues operated as boundary objects amongst the teams. We discuss the need to develop special tools such as these boundary objects in order to elicit issues of context and the ways they may affect the production of theory.
ijcml_2009.pdf
Conference Paper
Κυνηγός, Χ., Κ Γαβρίλης,, Κεΐσογλου, Στ, & Ψυχάρης, Γ. (2009). Η επιμόρφωση των εκπαιδευτικών στη Διδακτική των Μαθηματικών με τη βοήθεια εργαλείων ψηφιακής τεχνολογίας. In Ν. Τζιμόπουλος & Πόρποδα, Α. (Eds.), Πρακτικά 5ου Πανελλήνιου Συνεδρίου των Εκπαιδευτικών για τις ΤΠΕ «Αξιοποίηση των Τεχνολογιών της Πληροφορίας και της Επικοινωνίας στη Διδακτική Πράξη» (pp. 455-465). Αθήνα: Εκδόσεις Νέων Τεχνολογιών. tpe_syros_2009.pdf
Ψυχάρης, Γ., & Λάτση, Μ. (2009). Ο υπολογιστικός μικρόκοσμος MaLT. In Ν. Τζιμόπουλος & Πόρποδα, Α. (Eds.), Πρακτικά 5ου Πανελλήνιου Συνεδρίου των εκπαιδευτικών για τις ΤΠΕ: Αξιοποίηση των τεχνολογιών της Πληροφορίας και της Επικοινωνίας στη Διδακτική Πράξη (pp. 761-766). Αθήνα: Εκδόσεις Νέων Τεχνολογιών. tpe_syros_2009.pdf
Μουστάκη, Φ., Ψυχάρης, Γ., & Κυνηγός, Χ. (2009). Οι εξισώσεις ως μαθηματικά αντικείμενα στο πλαίσιο της κατασκευής και του ελέγχου προσομοιώσεων κίνησης. In Φ. Καλαβάσης, Καφούση, Σ., Χιονίδου, Μ., Σκουμπουρδή, Χ., & Φεσάκης, Γ. (Eds.), Πρακτικά 3ου Πανελλήνιου Συνεδρίου της Ένωσης Ερευνητών Διδακτικής Μαθηματικών (pp. 535-544). Πανεπιστήμιο Αιγαίου. enedim_2009_b.pdf
Μουστάκη, Φ., & Ψυχάρης, Γ. (2009). Κατασκευή και χειρισμός προσομοιώσεων κίνησης με τη χρήση εξισώσεων. In Ν. Τζιμόπουλος & Πόρποδα, Α. (Eds.), Πρακτικά 5ου Πανελλήνιου Συνεδρίου των Εκπαιδευτικών για τις ΤΠΕ «Αξιοποίηση των Τεχνολογιών της Πληροφορίας και της Επικοινωνίας στη Διδακτική Πράξη» (pp. 717-725). Αθήνα: Εκδόσεις Νέων Τεχνολογιών. tpe_syros_2009_b.pdf
Λάτση, Μ., Ψυχάρης, Γ., & Κυνηγός, Χ. (2009). Ανάπτυξη νοημάτων σχετικά με την έννοια της γωνίας μέσω γεωμετρικών κατασκευών στον τρισδιάστατο χώρο. In Φ. Καλαβάσης, Καφούση, Σ., Χιονίδου, Μ., Σκουμπουρδή, Χ., & Φεσάκης, Γ. (Eds.), Πρακτικά 3ου Πανελλήνιου Συνεδρίου της Ένωσης Ερευνητών Διδακτικής Μαθηματικών (ΕΝΕΔΙΜ 3) (pp. 503-512). Πανεπιστήμιο Αιγαίου. enedim_2009_a.pdf
Moustaki, F., Psycharis, G., & Kynigos, C. (2009). Making sense of structural aspects of equations by using algebraic-like formalism. In V. Durand-Guerrier, Soury-Lavergne, S., & Arzarello, F. (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (CERME 6) (pp. 1419-1428). Lyon, France. cerme_6_2009.pdf
Kynigos, C., Psycharis, G., & Latsi, M. (2009). Meanings for angle through geometrical constructions in 3d space. In M. Tzekaki, Kaldrimidou, M., & Sakonidis, C. (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (PME 33) (Vol. 3, pp. 457-464). Thessaloniki, Greece: PME. pme_33_2009b.pdf
Psycharis, G., Moustaki, F., & Kynigos, C. (2009). Reifying algebraic-like equations in the context of constructing and controlling animated models. In M. Tzekaki, Kaldrimidou, M., & Sakonidis, C. (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (PME 33) (Vol. 4, pp. 425-432). Thessaloniki, Greece: PME. pme_33_2009a.pdf
Journal Article
Psycharis, G., & Kynigos, C. (2009). Normalising geometrical figures: Dynamic manipulation and construction of meanings for ratio and proportion. Research in Mathematics Education (The international mathematics education research journal of the British Society for Research into Learning Mathematics), 11(2), 149-166. Article URLAbstract
Enlarging-shrinking geometrical figures by 13 year-olds is studied during the implementation of proportional geometric tasks in the classroom. Students worked in groups of two using ‘Turtleworlds’, a piece of geometrical construction software which combines symbolic notation, through a programming language, with dynamic manipulation of geometrical objects by dragging on sliders representing variable values. In this paper we study the students’ normalising activity, as they use this kind of dynamic manipulation to modify ‘buggy’ geometrical figures while developing meanings for ratio and proportion. We describe students’ normative actions in terms of four distinct Dynamic Manipulation Schemes (Reconnaissance, Correlation, Testing, Verification). We discuss the potential of dragging for mathematical insight in this particular computational environment, as well as the purposeful nature of the task which sets up possibilities for students to appreciate the utility of proportional relationships.
rme_2009.pdf
Psycharis, G., Latsi, M., & Kynigos, C. (2009). Meanings for fraction as number-measure by exploring the number line. International Journal for Technology in Mathematics Education, 19(3), 91-107.Abstract
This paper reports on a case-study design experiment in the domain of fraction as number-measure. We designed and implemented a set of exploratory tasks concerning comparison and ordering of fractions as well as operations with fractions. Two groups of 12-year-old students worked collaboratively using paper and pencil as well as a specially designed microworld which combines graphical and symbolic notation of fractions represented as points on the number line. We used the students’ interactions with the available representations as a window into their conceptual understanding and struggles in making sense of fraction asnumber-measure. We report on the features of the available representations from an epistemological point of view, on the design of activities aiming at creating meaningful problem contexts for fractions as well as on the meanings generated by the students by some illustrative examples of their work indicating the potential of the activities and tools for expressing and reflecting on the mathematical nature of fraction as number-measure.
jmte_2009.pdf